Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 413(21): 5395-5408, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34274992

RESUMEN

Transition metal oxides are promising electrocatalysts for water oxidation, i.e., the oxygen evolution reaction (OER), which is critical in electrochemical production of non-fossil fuels. The involvement of oxidation state changes of the metal in OER electrocatalysis is increasingly recognized in the literature. Tracing these oxidation states under operation conditions could provide relevant information for performance optimization and development of durable catalysts, but further methodical developments are needed. Here, we propose a strategy to use single-energy X-ray absorption spectroscopy for monitoring metal oxidation-state changes during OER operation with millisecond time resolution. The procedure to obtain time-resolved oxidation state values, using two calibration curves, is explained in detail. We demonstrate the significance of this approach as well as possible sources of data misinterpretation. We conclude that the combination of X-ray absorption spectroscopy with electrochemical techniques allows us to investigate the kinetics of redox transitions and to distinguish the catalytic current from the redox current. Tracking of the oxidation state changes of Co ions in electrodeposited oxide films during cyclic voltammetry in neutral pH electrolyte serves as a proof of principle.

2.
Phys Chem Chem Phys ; 21(23): 12485-12493, 2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31143918

RESUMEN

Direct (photo)electrochemical production of non-fossil fuels from water and CO2 requires water-oxidation catalysis at near-neutral pH in the presence of appropriate anions that serve as proton acceptors. We investigate the largely enigmatic structural role of anions in water oxidation for the prominent cobalt-phosphate catalyst (CoCat), an amorphous and hydrated oxide material. Co3([(P/As)O]4)2·8H2O served, in conjunction with phosphate-arsenate exchange, as a synthetic model system. Its structural transformation was induced by prolonged operation at catalytic potentials and probed by X-ray absorption spectroscopy not only at the metal (Co), but for the first time also at the anion (As) K-edge. For initially isostructural microcrystals, anion exchange determined the amorphization process and final structure. Comparison to amorphous electrodeposited Co oxide revealed that in CoCat, the arsenate binds not only at oxide-layer edges, but also arsenic substitutes cobalt positions within the layered-oxide structure in an unusual AsO6 coordination. Our results show that in water oxidation catalysis at near-neutral pH, anion type and exchange dynamics correlate with the catalyst structure and redox properties.

3.
ChemSusChem ; 11(19): 3449-3459, 2018 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-30160827

RESUMEN

CO2 reduction is of significant interest for the production of nonfossil fuels. The reactivity of eight Cu foams with substantially different morphologies was comprehensively investigated by analysis of the product spectrum and in situ electrochemical spectroscopies (X-ray absorption near edge structure, extended X-ray absorption fine structure, X-ray photoelectron spectroscopy, and Raman spectroscopy). The approach provided new insight into the reactivity determinants: The morphology, stable Cu oxide phases, and *CO poisoning of the H2 formation reaction are not decisive; the electrochemically active surface area influences the reactivity trends; macroscopic diffusion limits the proton supply, resulting in pronounced alkalization at the CuCat surfaces (operando Raman spectroscopy). H2 and CH4 formation was suppressed by macroscopic buffer alkalization, whereas CO and C2 H4 formation still proceeded through a largely pH-independent mechanism. C2 H4 was formed from two CO precursor species, namely adsorbed *CO and dissolved CO present in the foam cavities.

4.
Nat Commun ; 8(1): 2022, 2017 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-29222428

RESUMEN

The emergence of disordered metal oxides as electrocatalysts for the oxygen evolution reaction and reports of amorphization of crystalline materials during electrocatalysis reveal a need for robust structural models for this class of materials. Here we apply a combination of low-temperature X-ray absorption spectroscopy and time-resolved in situ X-ray absorption spectroelectrochemistry to analyze the structure and electrochemical properties of a series of disordered iron-cobalt oxides. We identify a composition-dependent distribution of di-µ-oxo bridged cobalt-cobalt, di-µ-oxo bridged cobalt-iron and corner-sharing cobalt structural motifs in the composition series. Comparison of the structural model with (spectro)electrochemical data reveals relationships across the composition series that enable unprecedented assignment of voltammetric redox processes to specific structural motifs. We confirm that oxygen evolution occurs at two distinct reaction sites, di-µ-oxo bridged cobalt-cobalt and di-µ-oxo bridged iron-cobalt sites, and identify direct and indirect modes-of-action for iron ions in the mixed-metal compositions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...