Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 158(13): 134718, 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37031116

RESUMEN

The electrochemically active lead dioxide (ß-PbO2) contains the hydrogen (H) species inside the bulk and on the surface. The loss of the surface H species is proposed to be one of the factors in lead-acid battery failure. In this study, water adsorption on ß-PbO2 has been investigated using theoretical approaches to reveal the chemical forms of the surface H species and identify a probable cause of H loss mechanisms. For the single water-ß-PbO2, density functional theory (DFT) calculations present intact water molecular adsorption on ß-PbO2 (100) and dissociative water adsorption on ß-PbO2 (110), (101), and (001) surfaces. The geometric distances and the number of hydrogen bonds contribute to the adsorption energy reduction of single water adsorption. For the liquid water-ß-PbO2 slab models, DFT-based molecular dynamics simulations observe that the surface lead sites are fully occupied by a hydroxyl group or intact water molecule, and some of the surface oxygens are protonated at 300 K. On the ß-PbO2 (110) termination, dissociative water adsorption and intact molecular water adsorption occur competitively, leading to about 50% dissociation of adsorbed water molecules. On the ß-PbO2 (100), (101), and (001) terminations, the water molecules adsorb preferably in the dissociative form. The surface dependence of water dissociation is explored in terms of hydrogen bonding interactions relevant to adsorbed aqueous species. It is indicated through the Wulff crystal shape that the increase in the ß-PbO2 crystallite size may be one of the H loss mechanisms associated with the electrochemically inactive ß-PbO2.

2.
Sci Rep ; 13(1): 852, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36646820

RESUMEN

Calcium phosphate forms particles under excessive urinary excretion of phosphate in the kidney. While the formation of calcium phosphate particles (CaPs) has been implicated in the damage to renal tubular cells and renal dysfunction, clarifying the ultrastructural information and the elemental composition of the small CaPs in the wide areas of kidney tissue has been technically difficult. This study introduces correlative and sequential light as well as electron microscopic CaP observation in the kidney tissue by combining fluorescent staining for CaPs and energy-dispersive X-ray spectroscopy (EDS) in scanning electron microscopy (SEM) on resin sections prepared using high-pressure freezing and freeze substitution. CaPs formed in mouse kidneys under long-term feeding of a high-phosphate diet were clearly visualized on resin sections by fluorescence-conjugated alendronate derivatives and toluidine blue metachromasia. These CaPs were verified by correlative observation with EDS. Furthermore, small CaPs formed in the kidney under short-term feeding were detected using fluorescent probes. The elemental composition of the particles, including calcium and magnesium, was identified following EDS analyses. These results suggest that the correlative microscopy approach is helpful for observing in situ distribution and elemental composition of CaPs in the kidney and contributing to studies regarding CaP formation-associated pathophysiology.


Asunto(s)
Fosfatos de Calcio , Electrones , Ratones , Animales , Microscopía Electrónica de Rastreo , Fosfatos , Riñón , Dieta
3.
Front Neural Circuits ; 16: 933201, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35937203

RESUMEN

In the vertebrate olfactory bulb, reciprocal dendrodendritic interactions between its principal neurons, the mitral and tufted cells, and inhibitory interneurons in the external plexiform layer mediate both recurrent and lateral inhibition, with the most numerous of these interneurons being granule cells. Here, we used recently established anatomical parameters and functional data on unitary synaptic transmission to simulate the strength of recurrent inhibition of mitral cells specifically from the reciprocal spines of rat olfactory bulb granule cells in a quantitative manner. Our functional data allowed us to derive a unitary synaptic conductance on the order of 0.2 nS. The simulations predicted that somatic voltage deflections by even proximal individual granule cell inputs are below the detection threshold and that attenuation with distance is roughly linear, with a passive length constant of 650 µm. However, since recurrent inhibition in the wake of a mitral cell action potential will originate from hundreds of reciprocal spines, the summated recurrent IPSP will be much larger, even though there will be substantial mutual shunting across the many inputs. Next, we updated and refined a preexisting model of connectivity within the entire rat olfactory bulb, first between pairs of mitral and granule cells, to estimate the likelihood and impact of recurrent inhibition depending on the distance between cells. Moreover, to characterize the substrate of lateral inhibition, we estimated the connectivity via granule cells between any two mitral cells or all the mitral cells that belong to a functional glomerular ensemble (i.e., which receive their input from the same glomerulus), again as a function of the distance between mitral cells and/or entire glomerular mitral cell ensembles. Our results predict the extent of the three regimes of anatomical connectivity between glomerular ensembles: high connectivity within a glomerular ensemble and across the first four rings of adjacent glomeruli, substantial connectivity to up to eleven glomeruli away, and negligible connectivity beyond. Finally, in a first attempt to estimate the functional strength of granule-cell mediated lateral inhibition, we combined this anatomical estimate with our above simulation results on attenuation with distance, resulting in slightly narrowed regimes of a functional impact compared to the anatomical connectivity.


Asunto(s)
Dendritas , Bulbo Olfatorio , Animales , Dendritas/fisiología , Interneuronas/fisiología , Neuronas , Bulbo Olfatorio/fisiología , Ratas , Sinapsis/fisiología
4.
Sci Adv ; 8(30): eabm0531, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35895812

RESUMEN

In mammalian neocortex, learning triggers the formation and turnover of new postsynaptic spines on pyramidal cell dendrites. However, the biological principles of spine reorganization during learning remain elusive because the identity of their presynaptic neuronal partners is unknown. Here, we show that two presynaptic neural circuits supervise distinct programs of spine dynamics to execute learning. We imaged spine dynamics in motor cortex during learning and performed post hoc identification of their afferent presynaptic neurons. New spines that appeared during learning formed small transient contacts with corticocortical neurons that were eliminated on skill acquisition. In contrast, persistent spines with axons from thalamic neurons were formed and enlarged. These results suggest that pyramidal cell dendrites in motor cortex use a neural circuit division of labor during skill learning, with dynamic teaching contacts from top-down intracortical axons followed by synaptic memory formation driven by thalamic axons. Dual spine supervision may govern diverse skill learning in the neocortex.


Asunto(s)
Corteza Motora , Neocórtex , Animales , Aprendizaje/fisiología , Mamíferos , Corteza Motora/fisiología , Neuronas , Células Piramidales/fisiología
5.
PLoS Comput Biol ; 17(9): e1009364, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34591840

RESUMEN

In behavioral learning, reward-related events are encoded into phasic dopamine (DA) signals in the brain. In particular, unexpected reward omission leads to a phasic decrease in DA (DA dip) in the striatum, which triggers long-term potentiation (LTP) in DA D2 receptor (D2R)-expressing spiny-projection neurons (D2 SPNs). While this LTP is required for reward discrimination, it is unclear how such a short DA-dip signal (0.5-2 s) is transferred through intracellular signaling to the coincidence detector, adenylate cyclase (AC). In the present study, we built a computational model of D2 signaling to determine conditions for the DA-dip detection. The DA dip can be detected only if the basal DA signal sufficiently inhibits AC, and the DA-dip signal sufficiently disinhibits AC. We found that those two requirements were simultaneously satisfied only if two key molecules, D2R and regulators of G protein signaling (RGS) were balanced within a certain range; this balance has indeed been observed in experimental studies. We also found that high level of RGS was required for the detection of a 0.5-s short DA dip, and the analytical solutions for these requirements confirmed their universality. The imbalance between D2R and RGS is associated with schizophrenia and DYT1 dystonia, both of which are accompanied by abnormal striatal LTP. Our simulations suggest that D2 SPNs in patients with schizophrenia and DYT1 dystonia cannot detect short DA dips. We finally discussed that such psychiatric and movement disorders can be understood in terms of the imbalance between D2R and RGS.


Asunto(s)
Dopamina/fisiología , Modelos Neurológicos , Receptores de Dopamina D2/fisiología , Adenilil Ciclasas/fisiología , Animales , Biología Computacional , Cuerpo Estriado/fisiología , Distonía Muscular Deformante/fisiopatología , Proteínas de Unión al GTP/fisiología , Humanos , Aprendizaje/fisiología , Potenciación a Largo Plazo/fisiología , Trastornos Mentales/fisiopatología , Trastornos del Movimiento/fisiopatología , Neuronas/fisiología , Recompensa , Esquizofrenia/fisiopatología , Transducción de Señal/fisiología
6.
Nat Methods ; 18(4): 406-416, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33686300

RESUMEN

Point-scanning imaging systems are among the most widely used tools for high-resolution cellular and tissue imaging, benefiting from arbitrarily defined pixel sizes. The resolution, speed, sample preservation and signal-to-noise ratio (SNR) of point-scanning systems are difficult to optimize simultaneously. We show these limitations can be mitigated via the use of deep learning-based supersampling of undersampled images acquired on a point-scanning system, which we term point-scanning super-resolution (PSSR) imaging. We designed a 'crappifier' that computationally degrades high SNR, high-pixel resolution ground truth images to simulate low SNR, low-resolution counterparts for training PSSR models that can restore real-world undersampled images. For high spatiotemporal resolution fluorescence time-lapse data, we developed a 'multi-frame' PSSR approach that uses information in adjacent frames to improve model predictions. PSSR facilitates point-scanning image acquisition with otherwise unattainable resolution, speed and sensitivity. All the training data, models and code for PSSR are publicly available at 3DEM.org.


Asunto(s)
Aprendizaje Profundo , Algoritmos , Microscopía Electrónica/métodos , Relación Señal-Ruido
7.
Sci Rep ; 9(1): 19413, 2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31857624

RESUMEN

Recently, there has been rapid expansion in the field of micro-connectomics, which targets the three-dimensional (3D) reconstruction of neuronal networks from stacks of two-dimensional (2D) electron microscopy (EM) images. The spatial scale of the 3D reconstruction increases rapidly owing to deep convolutional neural networks (CNNs) that enable automated image segmentation. Several research teams have developed their own software pipelines for CNN-based segmentation. However, the complexity of such pipelines makes their use difficult even for computer experts and impossible for non-experts. In this study, we developed a new software program, called UNI-EM, for 2D and 3D CNN-based segmentation. UNI-EM is a software collection for CNN-based EM image segmentation, including ground truth generation, training, inference, postprocessing, proofreading, and visualization. UNI-EM incorporates a set of 2D CNNs, i.e., U-Net, ResNet, HighwayNet, and DenseNet. We further wrapped flood-filling networks (FFNs) as a representative 3D CNN-based neuron segmentation algorithm. The 2D- and 3D-CNNs are known to demonstrate state-of-the-art level segmentation performance. We then provided two example workflows: mitochondria segmentation using a 2D CNN and neuron segmentation using FFNs. By following these example workflows, users can benefit from CNN-based segmentation without possessing knowledge of Python programming or CNN frameworks.

9.
J Neurophysiol ; 121(6): 2222-2236, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30995139

RESUMEN

The cortex contains multiple neuron types with specific connectivity and functions. Recent progress has provided a better understanding of the interactions of these neuron types as well as their output organization particularly for the frontal cortex, with implications for the circuit mechanisms underlying cortical oscillations that have cognitive functions. Layer 5 pyramidal cells (PCs) in the frontal cortex comprise two major subtypes: crossed-corticostriatal (CCS) and corticopontine (CPn) cells. Functionally, CCS and CPn cells exhibit similar phase-dependent firing during gamma waves but participate in two distinct subnetworks that are linked unidirectionally from CCS to CPn cells. GABAergic parvalbumin-expressing fast-spiking (PV-FS) cells, necessary for gamma oscillation, innervate PCs, with stronger and global inhibition to somata and weaker and localized inhibitions to dendritic shafts/spines. While PV-FS cells form reciprocal connections with both CCS and CPn cells, the excitation from CPn to PV-FS cells exhibits short-term synaptic dynamics conducive for oscillation induction. The electrical coupling between PV-FS cells facilitates spike synchronization among PV-FS cells receiving common excitatory inputs from local PCs and inhibits other PV-FS cells via electrically communicated spike afterhyperpolarizations. These connectivity characteristics can promote synchronous firing in the local networks of CPn cells and firing of some CCS cells by anode-break excitation. Thus subsets of L5 CCS and CPn cells within different levels of connection hierarchy exhibit coordinated activity via their common connections with PV-FS cells, and the resulting PC output drives diverse neuronal targets in cortical layer 1 and the striatum with specific temporal precision, expanding the computational power of the cortical network.


Asunto(s)
Ondas Encefálicas/fisiología , Cuerpo Estriado/fisiología , Lóbulo Frontal/fisiología , Neuronas GABAérgicas/fisiología , Red Nerviosa/fisiología , Parvalbúminas/metabolismo , Células Piramidales/fisiología , Animales , Lóbulo Frontal/citología , Ratas
10.
J Chem Phys ; 149(22): 224103, 2018 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-30553265

RESUMEN

The reaction of carbon dioxide (CO2) with aqueous 2,2'-iminodiethanol (trivial name is diethanolamine: DEA) has been investigated using both blue moon ensemble and metadynamics approaches combined with ab initio molecular dynamics (AIMD) simulations. A spontaneous direct proton transfer from DEA zwitterion (DEAZW) to DEA but not to H2O has been observed in straightforward AIMD simulation in the time scale of ps. The ab initio free-energy calculations reproduced the overall free-energy difference, predicting the ionic products DEA carbamate ion (DEAC) and the protonated DEA (DEAH). The computed free-energy barrier for the first reaction step, which is the CO2 binding (48 kJ mol-1), is found to agree reasonably well with the available experimental data (52-56 kJ mol-1). By contrast, the barriers for the next step, the deprotonation of zwitterion realized either via reaction with DEA or H2O, are underestimated by 25-35 kJ mol-1 compared to the experimental reference. A part of this error is attributed to the neglected reversible work needed to bring two reactants together, which might significantly contribute to the free-energy of activation of bimolecular reactions in a dilute solution. The computed free-energy profile is compared with our results [Y. Kubota et al., J. Chem. Phys. 146, 094303 (2017)] for the same reaction in 2-aminoethanol (trivial name is monoethanolamine: MEA).

11.
Front Neural Circuits ; 12: 98, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30483066

RESUMEN

One recent technical innovation in neuroscience is microcircuit analysis using three-dimensional reconstructions of neural elements with a large volume Electron microscopy (EM) data set. Large-scale data sets are acquired with newly-developed electron microscope systems such as automated tape-collecting ultramicrotomy (ATUM) with scanning EM (SEM), serial block-face EM (SBEM) and focused ion beam-SEM (FIB-SEM). Currently, projects are also underway to develop computer applications for the registration and segmentation of the serially-captured electron micrographs that are suitable for analyzing large volume EM data sets thoroughly and efficiently. The analysis of large volume data sets can bring innovative research results. These recently available techniques promote our understanding of the functional architecture of the brain.


Asunto(s)
Encéfalo/ultraestructura , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Electrónica de Rastreo/métodos , Microtomía/métodos , Red Nerviosa/ultraestructura , Animales , Humanos , Procesamiento de Imagen Asistido por Computador/instrumentación , Microscopía Electrónica de Rastreo/instrumentación , Microtomía/instrumentación , Nanotubos
12.
Nat Commun ; 9(1): 437, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29382816

RESUMEN

Automated tape-collecting ultramicrotomy in conjunction with scanning electron microscopy (SEM) is a powerful approach for volume electron microscopy and three-dimensional neuronal circuit analysis. Current tapes are limited by section wrinkle formation, surface scratches and sample charging during imaging. Here we show that a plasma-hydrophilized carbon nanotube (CNT)-coated polyethylene terephthalate (PET) tape effectively resolves these issues and produces SEM images of comparable quality to those from transmission electron microscopy. CNT tape can withstand multiple rounds of imaging, offer low surface resistance across the entire tape length and generate no wrinkles during the collection of ultrathin sections. When combined with an enhanced en bloc staining protocol, CNT tape-processed brain sections reveal detailed synaptic ultrastructure. In addition, CNT tape is compatible with post-embedding immunostaining for light and electron microscopy. We conclude that CNT tape can enable high-resolution volume electron microscopy for brain ultrastructure analysis.


Asunto(s)
Encéfalo/ultraestructura , Microscopía Electrónica de Rastreo/instrumentación , Microscopía Electrónica de Rastreo/métodos , Nanotubos de Carbono , Animales , Masculino , Ratones , Microtomía , Tereftalatos Polietilenos , Ratas Wistar
13.
Science ; 353(6304): 1108, 2016 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-27609882

RESUMEN

Jiang et al (Research Article, 27 November 2015, aac9462) describe detailed experiments that substantially add to the knowledge of cortical microcircuitry and are unique in the number of connections reported and the quality of interneuron reconstruction. The work appeals to experts and laypersons because of the notion that it unveils new principles and provides a complete description of cortical circuits. We provide a counterbalance to the authors' claims to give those less familiar with the minutiae of cortical circuits a better sense of the contributions and the limitations of this study.


Asunto(s)
Interneuronas , Neocórtex , Humanos
14.
Front Neural Circuits ; 10: 27, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27199670

RESUMEN

The most typical and well known inhibitory action in the cortical microcircuit is a strong inhibition on the target neuron by axo-somatic synapses. However, it has become clear that synaptic inhibition in the cortex is much more diverse and complicated. Firstly, at least ten or more inhibitory non-pyramidal cell subtypes engage in diverse inhibitory functions to produce the elaborate activity characteristic of the different cortical states. Each distinct non-pyramidal cell subtype has its own independent inhibitory function. Secondly, the inhibitory synapses innervate different neuronal domains, such as axons, spines, dendrites and soma, and their inhibitory postsynaptic potential (IPSP) size is not uniform. Thus, cortical inhibition is highly complex, with a wide variety of anatomical and physiological modes. Moreover, the functional significance of the various inhibitory synapse innervation styles and their unique structural dynamic behaviors differ from those of excitatory synapses. In this review, we summarize our current understanding of the inhibitory mechanisms of the cortical microcircuit.


Asunto(s)
Corteza Cerebral/citología , Inhibición Neural/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Animales , Humanos , Modelos Biológicos , Ácido gamma-Aminobutírico/metabolismo
16.
Neuron ; 89(4): 756-69, 2016 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-26853302

RESUMEN

Older concepts of a hard-wired adult brain have been overturned in recent years by in vivo imaging studies revealing synaptic remodeling, now thought to mediate rearrangements in microcircuit connectivity. Using three-color labeling and spectrally resolved two-photon microscopy, we monitor in parallel the daily structural dynamics (assembly or removal) of excitatory and inhibitory postsynaptic sites on the same neurons in mouse visual cortex in vivo. We find that dynamic inhibitory synapses often disappear and reappear again in the same location. The starkest contrast between excitatory and inhibitory synapse dynamics is on dually innervated spines, where inhibitory synapses frequently recur while excitatory synapses are stable. Monocular deprivation, a model of sensory input-dependent plasticity, shortens inhibitory synapse lifetimes and lengthens intervals to recurrence, resulting in a new dynamic state with reduced inhibitory synaptic presence. Reversible structural dynamics indicate a fundamentally new role for inhibitory synaptic remodeling--flexible, input-specific modulation of stable excitatory connections.


Asunto(s)
Inhibición Neural/fisiología , Plasticidad Neuronal/fisiología , Células Piramidales/ultraestructura , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Corteza Visual/citología , Animales , Proteínas Portadoras/metabolismo , Homólogo 4 de la Proteína Discs Large , Femenino , Lateralidad Funcional , Guanilato-Quinasas/genética , Guanilato-Quinasas/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Inhibición Neural/genética , Técnicas de Cultivo de Órganos , Embarazo , Privación Sensorial , Sinapsis/ultraestructura , Ácido gamma-Aminobutírico/farmacología
17.
Cereb Cortex ; 26(6): 2689-2704, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26045568

RESUMEN

Most glutamatergic inputs in the neocortex originate from the thalamus or neocortical pyramidal cells. To test whether thalamocortical afferents selectively innervate specific cortical cell subtypes and surface domains, we investigated the distribution patterns of thalamocortical and corticocortical excitatory synaptic inputs in identified postsynaptic cortical cell subtypes using intracellular and immunohistochemical staining combined with confocal laser scanning and electron microscopic observations in 2 thalamorecipient sublayers, lower layer 2/3 (L2/3b) and lower layer 5 (L5b) of rat frontal cortex. The dendrites of GABAergic parvalbumin (PV) cells preferentially received corticocortical inputs in both sublayers. The somata of L2/3b PV cells received thalamic inputs in similar proportions to the basal dendritic spines of L2/3b pyramidal cells, whereas L5b PV somata were mostly innervated by cortical inputs. The basal dendrites of L2/3b pyramidal and L5b corticopontine pyramidal cells received cortical and thalamic glutamatergic inputs in proportion to their local abundance, whereas crossed-corticostriatal pyramidal cells in L5b exhibited a preference for thalamic inputs, particularly in their distal dendrites. Our data demonstrate an exquisite selectivity among thalamocortical afferents in which synaptic connectivity is dependent on the postsynaptic neuron subtype, cortical sublayer, and cell surface domain.


Asunto(s)
Lóbulo Frontal/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Tálamo/fisiología , Animales , Lóbulo Frontal/ultraestructura , Ácido Glutámico/metabolismo , Inmunohistoquímica , Masculino , Microscopía Confocal , Microscopía Electrónica , Técnicas de Trazados de Vías Neuroanatómicas , Neuronas/ultraestructura , Ratas Wistar , Tálamo/ultraestructura
18.
Elife ; 42015 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-26142457

RESUMEN

Inhibitory interneurons target precise membrane regions on pyramidal cells, but differences in their functional effects on somata, dendrites and spines remain unclear. We analyzed inhibitory synaptic events induced by cortical, fast-spiking (FS) basket cells which innervate dendritic shafts and spines as well as pyramidal cell somata. Serial electron micrograph (EMg) reconstructions showed that somatic synapses were larger than dendritic contacts. Simulations with precise anatomical and physiological data reveal functional differences between different innervation styles. FS cell soma-targeting synapses initiate a strong, global inhibition, those on shafts inhibit more restricted dendritic zones, while synapses on spines may mediate a strictly local veto. Thus, FS cell synapses of different sizes and sites provide functionally diverse forms of pyramidal cell inhibition.


Asunto(s)
Comunicación Celular , Interneuronas/fisiología , Inhibición Neural , Células Piramidales/fisiología , Animales , Cuerpo Celular/ultraestructura , Dendritas/ultraestructura , Microscopía Electrónica , Ratas Wistar , Sinapsis/ultraestructura , Imagen de Lapso de Tiempo
19.
Microscopy (Oxf) ; 64(1): 27-36, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25564566

RESUMEN

Recent developments in electron microscopy largely automate the continuous acquisition of serial electron micrographs (EMGs), previously achieved by laborious manual serial ultrathin sectioning using an ultramicrotome and ultrastructural image capture process with transmission electron microscopy. The new systems cut thin sections and capture serial EMGs automatically, allowing for acquisition of large data sets in a reasonably short time. The new methods are focused ion beam/scanning electron microscopy, ultramicrotome/serial block-face scanning electron microscopy, automated tape-collection ultramicrotome/scanning electron microscopy and transmission electron microscope camera array. In this review, their positive and negative aspects are discussed.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Electrónica de Rastreo/métodos , Microscopía Electrónica de Transmisión/métodos , Microtomía/métodos , Neuronas/ultraestructura , Encéfalo/ultraestructura , Técnicas de Preparación Histocitológica/métodos , Humanos , Imagenología Tridimensional/métodos
20.
Cogn Neurodyn ; 8(4): 267-76, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25009669

RESUMEN

Recent studies have shown that the dendrites of several neurons are not simple translators but are crucial facilitators of excitatory postsynaptic potential (EPSP) propagation and summation of synaptic inputs to compensate for inherent voltage attenuation. Granule cells (GCs)are located at the gateway for valuable information arriving at the hippocampus from the entorhinal cortex. However, the underlying mechanisms of information integration along the dendrites of GCs in the hippocampus are still unclear. In this study, we investigated the input integration around dendritic branches of GCs in the rat hippocampus. We applied differential spatiotemporal stimulations to the dendrites using a high-speed glutamate-uncaging laser. Our results showed that when two sites close to and equidistant from a branching point were simultaneously stimulated, a nonlinear summation of EPSPs was observed at the soma. In addition, nonlinear summation (facilitation) depended on the stimulus location and was significantly blocked by the application of a voltage-dependent Ca(2+) channel antagonist. These findings suggest that the nonlinear summation of EPSPs around the dendritic branches of hippocampal GCs is a result of voltage-dependent Ca(2+) channel activation and may play a crucial role in the integration of input information.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA