Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 4813, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413743

RESUMEN

Chondroitin, a class of glycosaminoglycan polysaccharides, is found as proteoglycans in the extracellular matrix, plays a crucial role in tissue morphogenesis during development and axonal regeneration. Ingestion of chondroitin prolongs the lifespan of C. elegans. However, the roles of endogenous chondroitin in regulating lifespan and healthspan mostly remain to be investigated. Here, we demonstrate that a gain-of-function mutation in MIG-22, the chondroitin polymerizing factor (ChPF), results in elevated chondroitin levels and a significant extension of both the lifespan and healthspan in C. elegans. Importantly, the remarkable longevity observed in mig-22(gf) mutants is dependent on SQV-5/chondroitin synthase (ChSy), highlighting the pivotal role of chondroitin in controlling both lifespan and healthspan. Additionally, the mig-22(gf) mutation effectively suppresses the reduced healthspan associated with the loss of MIG-17/ADAMTS metalloprotease, a crucial for factor in basement membrane (BM) remodeling. Our findings suggest that chondroitin functions in the control of healthspan downstream of MIG-17, while regulating lifespan through a pathway independent of MIG-17.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Condroitín/metabolismo , Longevidad/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Glicosaminoglicanos/metabolismo , Metaloendopeptidasas/metabolismo , Desintegrinas/metabolismo
2.
Cell Tissue Res ; 394(1): 131-144, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37474621

RESUMEN

Pancreatic ß cell clusters produce insulin and play a central role in glucose homeostasis. The regenerative capacity of mammalian ß cells is limited and the loss of ß cells causes diabetes. In contrast, zebrafish ß cell clusters have a high regenerative capacity, making them an attractive model to study ß cell cluster regeneration. How zebrafish ß cell clusters regenerate, when the regeneration process is complete, and the identification of the cellular source of regeneration are fundamental questions that require investigation. Here, using larval and adult zebrafish, we demonstrate that pancreatic ß cell clusters undergo a two-step regeneration process, regenerating functionality and then ß cell numbers. Additionally, we found that all regenerating pancreatic ß cells arose from Neurod1-expressing cells and that cells from different lineages contribute to both functional and ß cell number recovery throughout their life. Furthermore, we found that during development and neogenesis, as well as regeneration, all ß cells undergo Neurod1expression in zebrafish. Together, these results shed light on the fundamental cellular mechanisms underlying ß cell cluster development, neogenesis, and regeneration.


Asunto(s)
Diabetes Mellitus , Células Secretoras de Insulina , Animales , Linaje de la Célula , Insulina , Mamíferos , Pez Cebra , Proteínas de Pez Cebra/metabolismo
3.
J Cell Sci ; 136(13)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37313686

RESUMEN

The γ-tubulin complex (γTuC) is a widely conserved microtubule nucleator, but some of its components, namely GCP4, GCP5 and GCP6 (also known as TUBGCP4, TUBGCP5 and TUBGCP6, respectively), have not been detected in Caenorhabditis elegans. Here, we identified two γTuC-associated proteins in C. elegans, GTAP-1 and GTAP-2, for which apparent orthologs were detected only in the genus Caenorhabditis. GTAP-1 and GTAP-2 were found to localize at centrosomes and the plasma membrane of the germline, and their centrosomal localization was interdependent. In early C. elegans embryos, whereas the conserved γTuC component MZT-1 (also known as MOZART1 and MZT1) was essential for the localization of centrosomal γ-tubulin, depletion of GTAP-1 and/or GTAP-2 caused up to 50% reduction of centrosomal γ-tubulin and precocious disassembly of spindle poles during mitotic telophase. In the adult germline, GTAP-1 and GTAP-2 contributed to efficient recruitment of the γTuC to the plasma membrane. Depletion of GTAP-1, but not of GTAP-2, severely disrupted both the microtubule array and the honeycomb-like structure of the adult germline. We propose that GTAP-1 and GTAP-2 are unconventional components of the γTuC that contribute to the organization of both centrosomal and non-centrosomal microtubules by targeting the γTuC to specific subcellular sites in a tissue-specific manner.


Asunto(s)
Caenorhabditis elegans , Tubulina (Proteína) , Animales , Tubulina (Proteína)/metabolismo , Caenorhabditis elegans/metabolismo , Microtúbulos/metabolismo , Centro Organizador de los Microtúbulos/metabolismo , Centrosoma/metabolismo , Células Germinativas/metabolismo , Huso Acromático/metabolismo
4.
FASEB J ; 37(4): e22851, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36935171

RESUMEN

Sarcopenia is a geriatric syndrome characterized by an age-related decline in skeletal muscle mass and strength. Here, we show that suppression of mitochondrial calcium uniporter (MCU)-mediated Ca2+ influx into mitochondria in the body wall muscles of the nematode Caenorhabditis elegans improved the sarcopenic phenotypes, blunting movement and mitochondrial structural and functional decline with age. We found that normally aged muscle cells exhibited elevated resting mitochondrial Ca2+ levels and increased mitophagy to eliminate damaged mitochondria. Similar to aging muscle, we found that suppressing MCU function in muscular dystrophy improved movement via reducing elevated resting mitochondrial Ca2+ levels. Taken together, our results reveal that elevated resting mitochondrial Ca2+ levels contribute to muscle decline with age and muscular dystrophy. Further, modulation of MCU activity may act as a potential pharmacological target in various conditions involving muscle loss.


Asunto(s)
Distrofias Musculares , Sarcopenia , Animales , Caenorhabditis elegans , Mitocondrias/patología , Músculo Esquelético/metabolismo , Sarcopenia/patología , Distrofias Musculares/metabolismo , Calcio/metabolismo
5.
Front Med (Lausanne) ; 9: 824622, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35178414

RESUMEN

SARS-CoV-2 is the causative agent of a new type of coronavirus infection, COVID-19, which has rapidly spread worldwide. The overall genome sequence homology between SARS-CoV-2 and SARS-CoV is 79%. However, the homology of the ORF8 protein between these two coronaviruses is low, at ~26%. Previously, it has been suggested that infection by the ORF8-deleted variant of SARS-CoV-2 results in less severe symptoms than in the case of wild-type SARS-CoV-2. Although we found that ORF8 is involved in the proteasome autoimmunity system, the precise role of ORF8 in infection and pathology has not been fully clarified. In this study, we determined a new network of ORF8-interacting proteins by performing in silico analysis of the binding proteins against the previously described 47 ORF8-binding proteins. We used as a dataset 431 human protein candidates from Uniprot that physically interacted with 47 ORF8-binding proteins, as identified using STRING. Homology and phylogenetic profile analyses of the protein dataset were performed on 446 eukaryotic species whose genome sequences were available in KEGG OC. Based on the phylogenetic profile results, clustering analysis was performed using Ward's method. Our phylogenetic profiling showed that the interactors of the ORF8-interacting proteins were clustered into three classes that were conserved across chordates (Class 1: 152 proteins), metazoans (Class 2: 163 proteins), and eukaryotes (Class 3: 114 proteins). Following the KEGG pathway analysis, classification of cellular localization, tissue-specific expression analysis, and a literature study on each class of the phylogenetic profiling cluster tree, we predicted that the following: protein members in Class 1 could contribute to COVID-19 pathogenesis via complement and coagulation cascades and could promote sarcoidosis; the members of Class 1 and 2, together, may contribute to the downregulation of Interferon-ß; and Class 3 proteins are associated with endoplasmic reticulum stress and the degradation of human leukocyte antigen.

6.
Genes Genomics ; 44(3): 343-357, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34843089

RESUMEN

BACKGROUND: Caenorhabditis elegans encodes three class I histone deacetylases (HDACs), HDA-1, HDA-2, and HDA-3. Although HDA-1 is known to be involved in embryogenesis, the regulatory roles of HDA-2 and HDA-3 in embryonic development remain unexplored. OBJECTIVE: To elucidate the functional roles of the three class I HDACs in C. elegans embryonic development. METHODS: The roles of Class I HDACs, HDA-1, HDA-2, and HDA-3 in Caenorhabditis elegans during embryogenesis were investigated through the analysis of embryonic lethality via gene knockdown or deletion mutants. Additionally, the size of these knockdown and mutant eggs was observed using a differential interference contrast microscope. Finally, expression pattern and tissue-specific role of hda-2 and transcriptome of the hda-2 mutant were analyzed. RESULTS: Here, we report that HDA-1 and HDA-2, but not HDA-3, play essential roles in Caenorhabditis elegans embryonic development. Our observations of the fertilized egg size variance demonstrated that HDA-2 is involved in regulating the size of fertilized eggs. Combined analysis of expression patterns and sheath cell-specific rescue experiments indicated that the transgenerational role of HDA-2 is involved in the viability of embryonic development and fertilized egg size regulation. Furthermore, transcriptome analysis of hda-2 mutant embryos implies that HDA-2 is involved in epigenetic regulation of embryonic biological processes by downregulating and upregulating the gene expression. CONCLUSION: Our finding suggests that HDA-2 regulates the embryonic development in Caenorhabditis elegans by controling a specific subset of genes, and this function might be mediated by transgenerational epigenetic effect.


Asunto(s)
Caenorhabditis elegans , Cigoto , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Desarrollo Embrionario/genética , Epigénesis Genética , Histona Desacetilasas/genética , Cigoto/metabolismo
8.
Sci Rep ; 11(1): 22370, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34785759

RESUMEN

Repulsive guidance molecules (RGMs) are evolutionarily conserved proteins implicated in repulsive axon guidance. Here we report the function of the Caenorhabditis elegans ortholog DRAG-1 in axon branching. The axons of hermaphrodite-specific neurons (HSNs) extend dorsal branches at the region abutting the vulval muscles. The drag-1 mutants exhibited defects in HSN axon branching in addition to a small body size phenotype. DRAG-1 expression in the hypodermal cells was required for the branching of the axons. Although DRAG-1 is normally expressed in the ventral hypodermis excepting the vulval region, its ectopic expression in vulval precursor cells was sufficient to induce the branching. The C-terminal glycosylphosphatidylinositol anchor of DRAG-1 was important for its function, suggesting that DRAG-1 should be anchored to the cell surface. Genetic analyses suggested that the membrane receptor UNC-40 acts in the same pathway with DRAG-1 in HSN branching. We propose that DRAG-1 expressed in the ventral hypodermis signals via the UNC-40 receptor expressed in HSNs to elicit branching activity of HSN axons.


Asunto(s)
Orientación del Axón , Axones/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Regulación de la Expresión Génica , Proteínas del Tejido Nervioso/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas del Tejido Nervioso/genética
9.
Biochem Biophys Res Commun ; 568: 68-75, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34192606

RESUMEN

Rett syndrome (OMIM #312750) is a developmental neurological disorder that is caused by a mutation in methyl-CpG-binding protein 2 (MeCP2). MeCP2 localizes to the nucleus, binds to methylated DNA, and regulates gene expression during neuronal development. MeCP2 assembles multiple protein complexes and its functions are controlled by interactions with its binding partners. Therefore, functional analysis of MeCP2 binding proteins is important. Previously, we proposed nine MeCP2-binding candidates in the cerebral cortex. In this study, we characterized and examined the function of the MeCP2 binding protein zinc finger protein 483 (ZNF483) to determine the significance of the MeCP2-ZNF483 interaction in neuronal development. Phylogenetic profiling revealed that the ZNF483 protein is broadly conserved in metazoans. In contrast, MeCP2 was obtained during evolution to chordates. To investigate ZNF483 functions, ZNF483-knockout P19 cell lines were established using the CRISPR-Cas9 system. These cell lines showed decreased cell proliferation, altered aggregate formation, decreased neuronal marker NeuN expression, and altered MeCP2 phosphorylation patterns. Notably, cytosolic localization of MeCP2 was enhanced by ZNF483-overexpression. Taken together, we propose that ZNF483 might be involved in the promotion of neuronal differentiation by regulating the subcellular localization of MeCP2 in P19 cells.


Asunto(s)
Proteína 2 de Unión a Metil-CpG/metabolismo , Neurogénesis , Animales , Línea Celular , Regulación del Desarrollo de la Expresión Génica , Proteína 2 de Unión a Metil-CpG/análisis , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Neuronas/citología , Neuronas/metabolismo , Filogenia
10.
Evol Bioinform Online ; 17: 11769343211003079, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33795929

RESUMEN

ORF8 is a highly variable genomic region of SARS-CoV-2. Although non-essential and the precise functions are unknown, it has been suggested that this protein assists in SARS-CoV-2 replication in the early secretory pathway and in immune evasion. We utilized the binding partners of SARS-CoV-2 proteins in human HEK293T cells and performed genome-wide phylogenetic profiling and clustering analyses in 446 eukaryotic species to predict and discover ORF8 binding partners that share associated functional mechanisms based on co-evolution. Results classified 47 ORF8 binding partner proteins into 3 clusters (groups 1-3), which were conserved in vertebrates (group 1), metazoan (group 2), and eukaryotes (group 3). Gene ontology analysis indicated that group 1 had no significant associated biological processes, while groups 2 and 3 were associated with glycoprotein biosynthesis process and ubiquitin-dependent endoplasmic reticulum-associated degradation pathways, respectively. Collectively, our results classified potential genes that might be associated with SARS-CoV-2 viral pathogenesis, specifically related to acute respiratory distress syndrome, and the secretory pathway. Here, we discuss the possible role of ORF8 in viral pathogenesis and in assisting viral replication and immune evasion via secretory pathway, as well as the possible factors associated with the rapid evolution of ORF8.

11.
Endocrinology ; 162(5)2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33675223

RESUMEN

Hypothyroidism is a common pathological condition characterized by insufficient activity of the thyroid hormones (THs), thyroxine (T4), and 3,5,3'-triiodothyronine (T3), in the whole body or in specific tissues. Hypothyroidism is associated with inadequate development of the intestine as well as gastrointestinal diseases. We used a zebrafish model of hypothyroidism to identify and characterize TH-modulated genes and cellular pathways controlling intestine development. In the intestine of hypothyroid juveniles and adults, the number of mucus-secreting goblet cells was reduced, and this phenotype could be rescued by T3 treatment. Transcriptome profiling revealed dozens of differentially expressed genes in the intestine of hypothyroid adults compared to controls. Notably, the expression of genes encoding to Fgf19 and its receptor Fgfr4 was markedly increased in the intestine of hypothyroid adults, and treatment with T3 normalized it. Blocking fibroblast growth factor (FGF) signaling, using an inducible dominant-negative Fgfr transgenic line, rescued the number of goblet cells in hypothyroid adults. These results show that THs inhibit the Fgf19-Fgfr4 signaling pathway, which is associated with inhibition of goblet cell differentiation in hypothyroidism. Both the TH and Fgf19-Fgfr4 signaling pathways can be pharmaceutical targets for the treatment of TH-related gastrointestinal diseases.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Células Caliciformes/metabolismo , Hipotiroidismo/metabolismo , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/metabolismo , Tiroxina/metabolismo , Triyodotironina/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Proliferación Celular , Modelos Animales de Enfermedad , Factores de Crecimiento de Fibroblastos/genética , Células Caliciformes/citología , Humanos , Hipotiroidismo/genética , Hipotiroidismo/fisiopatología , Mucosa Intestinal/crecimiento & desarrollo , Mucosa Intestinal/metabolismo , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/genética , Transducción de Señal , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/genética
12.
PLoS One ; 15(12): e0240571, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33264296

RESUMEN

During development of the Caenorhabditis elegans gonad, the gonadal leader cells, called distal tip cells (DTCs), migrate in a U-shaped pattern to form the U-shaped gonad arms. The ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) family metalloproteases MIG-17 and GON-1 are required for correct DTC migration. Mutations in mig-17 result in misshapen gonads due to the misdirected DTC migration, and mutations in gon-1 result in shortened and swollen gonads due to the premature termination of DTC migration. Although the phenotypes shown by mig-17 and gon-1 mutants are very different from one another, mutations that result in amino acid substitutions in the same basement membrane protein genes, emb-9/collagen IV a1, let-2/collagen IV a2 and fbl-1/fibulin-1, were identified as genetic suppressors of mig-17 and gon-1 mutants. To understand the roles shared by these two proteases, we examined the effects of the mig-17 suppressors on gon-1 and the effects of the gon-1 suppressors and enhancers on mig-17 gonadal defects. Some of the emb-9, let-2 and fbl-1 mutations suppressed both mig-17 and gon-1, whereas others acted only on mig-17 or gon-1. These results suggest that mig-17 and gon-1 have their specific functions as well as functions commonly shared between them for gonad formation. The levels of collagen IV accumulation in the DTC basement membrane were significantly higher in the gon-1 mutants as compared with wild type and were reduced to the wild-type levels when combined with suppressor mutations, but not with enhancer mutations, suggesting that the ability to reduce collagen IV levels is important for gon-1 suppression.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Movimiento Celular/genética , Desintegrinas/genética , Gónadas/crecimiento & desarrollo , Metaloendopeptidasas/genética , Proteínas ADAMTS/genética , Proteínas ADAMTS/metabolismo , Sustitución de Aminoácidos , Animales , Membrana Basal/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Desintegrinas/metabolismo , Elementos de Facilitación Genéticos/genética , Regulación del Desarrollo de la Expresión Génica , Gónadas/citología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Metaloendopeptidasas/metabolismo , Mutación
13.
Infect Genet Evol ; 81: 104272, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32142938

RESUMEN

The seventh novel human infecting Betacoronavirus that causes pneumonia (2019 novel coronavirus, 2019-nCoV) originated in Wuhan, China. The evolutionary relationship between 2019-nCoV and the other human respiratory illness-causing coronavirus is not closely related. We sought to characterize the relationship of the translated proteins of 2019-nCoV with other species of Orthocoronavirinae. A phylogenetic tree was constructed from the genome sequences. A cluster tree was developed from the profiles retrieved from the presence and absence of homologs of ten 2019-nCoV proteins. The combined data were used to characterize the relationship of the translated proteins of 2019-nCoV to other species of Orthocoronavirinae. Our analysis reliably suggests that 2019-nCoV is most closely related to BatCoV RaTG13 and belongs to subgenus Sarbecovirus of Betacoronavirus, together with SARS coronavirus and Bat-SARS-like coronavirus. The phylogenetic profiling cluster of homolog proteins of one annotated 2019-nCoV protein against other genome sequences revealed two clades of ten 2019-nCoV proteins. Clade 1 consisted of a group of conserved proteins in Orthocoronavirinae comprising Orf1ab polyprotein, Nucleocapsid protein, Spike glycoprotein, and Membrane protein. Clade 2 comprised six proteins exclusive to Sarbecovirus and Hibecovirus. Two of six Clade 2 nonstructural proteins, NS7b and NS8, were exclusively conserved among 2019-nCoV, BetaCoV_RaTG, and BatSARS-like Cov. NS7b and NS8 have previously been shown to affect immune response signaling in the SARS-CoV experimental model. Thus, we speculated that knowledge of the functional changes in the NS7b and NS8 proteins during evolution may provide important information to explore the human infective property of 2019-nCoV.


Asunto(s)
Betacoronavirus/clasificación , Betacoronavirus/genética , Evolución Molecular , Filogenia , Proteínas no Estructurales Virales/genética , Coronaviridae/clasificación , Coronaviridae/genética , ARN Polimerasa Dependiente de ARN de Coronavirus , SARS-CoV-2
14.
Int J Mol Sci ; 20(22)2019 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-31717404

RESUMEN

Rett syndrome (RTT), a neurodevelopmental disorder, is mainly caused by mutations in methyl CpG-binding protein 2 (MECP2), which has multiple functions such as binding to methylated DNA or interacting with a transcriptional co-repressor complex. It has been established that alterations in cyclin-dependent kinase-like 5 (CDKL5) or forkhead box protein G1 (FOXG1) correspond to distinct neurodevelopmental disorders, given that a series of studies have indicated that RTT is also caused by alterations in either one of these genes. We investigated the evolution and molecular features of MeCP2, CDKL5, and FOXG1 and their binding partners using phylogenetic profiling to gain a better understanding of their similarities. We also predicted the structural order-disorder propensity and assessed the evolutionary rates per site of MeCP2, CDKL5, and FOXG1 to investigate the relationships between disordered structure and other related properties with RTT. Here, we provide insight to the structural characteristics, evolution and interaction landscapes of those three proteins. We also uncovered the disordered structure properties and evolution of those proteins which may provide valuable information for the development of therapeutic strategies of RTT.


Asunto(s)
Simulación por Computador , Evolución Molecular , Factores de Transcripción Forkhead/genética , Proteína 2 de Unión a Metil-CpG/genética , Proteínas del Tejido Nervioso/genética , Proteínas Serina-Treonina Quinasas/genética , Síndrome de Rett/genética , Animales , Cordados/genética , Ontología de Genes , Humanos , Mutación Missense/genética , Especificidad de Órganos , Filogenia , Unión Proteica , Procesamiento Proteico-Postraduccional , Fracciones Subcelulares/metabolismo
15.
FASEB J ; 33(8): 9540-9550, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31162948

RESUMEN

Mitochondrial dysfunction impairs muscle health and causes subsequent muscle wasting. This study explores the role of mitochondrial dysfunction as an intramuscular signal for the extracellular matrix (ECM)-based proteolysis and, consequentially, muscle cell dystrophy. We found that inhibition of the mitochondrial electron transport chain causes paralysis as well as muscle structural damage in the nematode Caenorhabditis elegans. This was associated with a significant decline in collagen content. Both paralysis and muscle damage could be rescued with collagen IV overexpression, matrix metalloproteinase (MMP), and Furin inhibitors in Antimycin A-treated animal as well as in the C. elegans Duchenne muscular dystrophy model. Additionally, muscle cytosolic calcium increased in the Antimycin A-treated worms, and its down-regulation rescued the muscle damage, suggesting that calcium overload acts as one of the early triggers and activates Furin and MMPs for collagen degradation. In conclusion, we have established ECM degradation as an important pathway of muscle damage.-Sudevan, S., Takiura, M., Kubota, Y., Higashitani, N., Cooke, M., Ellwood, R. A., Etheridge, T., Szewczyk, N. J., Higashitani, A. Mitochondrial dysfunction causes Ca2+ overload and ECM degradation-mediated muscle damage in C. elegans.


Asunto(s)
Calcio/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología , Animales , Antimicina A/farmacología , Western Blotting , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Modelos Animales de Enfermedad , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Furina/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Mitocondrias/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular Animal , Distrofia Muscular de Duchenne
16.
Genetics ; 212(2): 523-535, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30992386

RESUMEN

Remodeling of the extracellular matrix supports tissue and organ development, by regulating cellular morphology and tissue integrity. However, proper extracellular matrix remodeling requires spatiotemporal regulation of extracellular metalloproteinase activity. Members of the ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family, including MIG-17 and GON-1, are evolutionarily conserved, secreted, zinc-requiring metalloproteinases. Although these proteases are required for extracellular matrix remodeling during gonadogenesis in Caenorhabditis elegans, their in vivo regulatory mechanisms remain to be delineated. Therefore, we focused on the C. elegans tissue inhibitors of metalloproteinases (TIMPs), TIMP-1 and CRI-2 Analysis of the transcription and translation products for GFP/Venus fusions, with TIMP-1 or CRI-2, indicated that these inhibitors were secreted and localized to the basement membrane of gonads and the plasma membrane of germ cells. A timp-1 deletion mutant exhibited gonadal growth defects and sterility, and the phenotypes of this mutant were fully rescued by a TIMP-1::Venus construct, but not by a TIMP-1(C21S)::Venus mutant construct, in which the inhibitor coding sequence had been mutated. Moreover, genetic data suggested that TIMP-1 negatively regulates proteolysis of the α1 chain of type IV collagen. We also found that the loss-of-function observed for the mutants timp-1 and cri-2 involves a partial suppression of gonadal defects found for the mutants mig-17/ADAMTS and gon-1/ADAMTS, and that this suppression was canceled upon overexpression of gon-1 or mig-17, respectively. Based on these results, we propose that both TIMP-1 and CRI-2 act as inhibitors of MIG-17 and GON-1 ADAMTSs to regulate gonad development in a noncell-autonomous manner.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Desintegrinas/metabolismo , Gónadas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Metaloendopeptidasas/metabolismo , Inhibidor Tisular de Metaloproteinasa-1/fisiología , Inhibidores Tisulares de Metaloproteinasas/metabolismo , Animales , Membrana Basal/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Membrana Celular/metabolismo , Colágeno Tipo IV/metabolismo , Desintegrinas/genética , Matriz Extracelular/metabolismo , Células Germinativas/metabolismo , Gónadas/crecimiento & desarrollo , Péptidos y Proteínas de Señalización Intercelular/genética , Metaloendopeptidasas/genética , Morfogénesis/genética , Morfogénesis/fisiología , Inhibidor Tisular de Metaloproteinasa-1/genética , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Inhibidores Tisulares de Metaloproteinasas/genética
17.
G3 (Bethesda) ; 6(5): 1449-57, 2016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-26994289

RESUMEN

MIG-17, a secreted protease of the ADAMTS family, acts in the directed migration of gonadal distal tip cells (DTCs) through regulation of the gonadal basement membrane in Caenorhabditis elegans Here, we show that MIG-17 is also required for the control of pharynx elongation during animal growth. We found that the pharynx was elongated in mig-17 mutants compared with wild type. MIG-17 localized to the pharyngeal basement membrane as well as to the gonadal basement membrane. The number of nuclei in the pharynx, and the pumping rate of the pharynx, were not affected in mig-17 mutants, suggesting that cells constituting the pharynx are elongated, although the pharynx functions normally in these mutants. In contrast to the control of DTC migration, MIG-18, a secreted cofactor of MIG-17, was not essential for pharynx length regulation. In addition, the downstream pathways of MIG-17 involving LET-2/type IV collagen, FBL-1/fibulin-1, and NID-1/nidogen, partly diverged from those in gonad development. These results indicate that basement membrane remodeling is important for organ length regulation, and suggest that MIG-17/ADAMTS functions in similar but distinct molecular machineries in pharyngeal and gonadal basement membranes.


Asunto(s)
Proteínas ADAMTS/genética , Proteínas ADAMTS/metabolismo , Caenorhabditis elegans/anatomía & histología , Caenorhabditis elegans/genética , Estudios de Asociación Genética , Carácter Cuantitativo Heredable , Proteínas ADAMTS/química , Animales , Membrana Basal/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Catálisis , Glicosilación , Gónadas/metabolismo , Mutación , Fenotipo , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas
18.
Dev Biol ; 397(2): 151-61, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25446539

RESUMEN

Organs are often formed by the extension and branching of epithelial tubes. An appropriate termination of epithelial tube extension is important for generating organs of the proper size and morphology. However, the mechanism by which epithelial tubes terminate their extension is mostly unknown. Here we show that the BED-finger domain protein MIG-39 acts to stop epithelial tube extension in Caenorhabditis elegans. The gonadal leader cells, called distal tip cells (DTCs), migrate in a U-shaped pattern during larval development and stop migrating at the young adult stage, generating a gonad with anterior and posterior U-shaped arms. In mig-39 mutants, however, DTCs overshot their normal stopping position. MIG-39 promoted the deceleration of DTCs, leading to the proper timing and positioning of the cessation of DTC migration. Among three Rac GTPase genes, mutations in ced-10 and rac-2 enhanced the overshoot of anterior DTCs, while they suppressed that of posterior DTCs of mig-39 mutants. On the other hand, the mutation in mig-2 suppressed both the anterior and posterior DTC defects of mig-39. Genetic analyses suggested that MIG-39 acts in parallel with Rac GTPases in stopping DTC migration. We propose a model in which the anterior and posterior DTCs respond in an opposite manner to the levels of Rac activities in the cessation of DTC migration.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Movimiento Celular/fisiología , Proteínas de Unión al ADN/metabolismo , Células Epiteliales/fisiología , Gónadas/embriología , Animales , Animales Modificados Genéticamente , Proteínas de Caenorhabditis elegans/genética , Movimiento Celular/genética , Cartilla de ADN/genética , Proteínas de Unión al ADN/genética , Gónadas/citología , Inmunohistoquímica , Modelos Biológicos , Mutación/genética , Plásmidos/genética , Interferencia de ARN , Proteínas de Unión al GTP rac/genética
19.
Dev Biol ; 391(1): 43-53, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24721716

RESUMEN

The PAF1 complex (PAF1C) is an evolutionarily conserved protein complex involved in transcriptional regulation and chromatin remodeling. How the PAF1C is involved in animal development is still not well understood. Here, we report that, in the nematode Caenorhabditis elegans, the PAF1C is involved in epidermal morphogenesis in late embryogenesis. From an RNAi screen we identified the C. elegans ortholog of a component of the PAF1C, CTR-9, as a gene whose depletion caused various defects during embryonic epidermal morphogenesis, including epidermal cell positioning, ventral enclosure and epidermal elongation. RNAi of orthologs of other four components of the PAF1C (PAFO-1, LEO-1, CDC-73 and RTFO-1) caused similar epidermal defects. In these embryos, whereas the number and cell fate determination of epidermal cells were apparently unaffected, their position and shape were severely disorganized. PAFO-1::mCherry, mCherry::LEO-1 and GFP::RTFO-1 driven by the authentic promoters were detected in the nuclei of a wide range of cells. Nuclear localization of GFP::RTFO-1 was independent of other PAF1C components, while PAFO-1::mCherry and mCherry::LEO-1 dependent on other components except RTFO-1. Epidermis-specific expression of mCherry::LEO-1 rescued embryonic lethality of the leo-1 deletion mutant. Thus, although the PAF1C is universally expressed in C. elegans embryos, its epidermal function is crucial for the viability of this animal.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/embriología , Cromatina/química , Actinas/metabolismo , Alelos , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Núcleo Celular/metabolismo , Epidermis/embriología , Eliminación de Gen , Proteínas Fluorescentes Verdes/metabolismo , Morfogénesis , Mutación , Fenotipo , Regiones Promotoras Genéticas , Interferencia de ARN , Factores de Tiempo
20.
Genetics ; 196(2): 471-9, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24318535

RESUMEN

The migration of Caenorhabditis elegans gonadal distal tip cells (DTCs) offers an excellent model to study the migration of epithelial tubes in organogenesis. mig-18 mutants cause meandering or wandering migration of DTCs during gonad formation, which is very similar to that observed in animals with mutations in mig-17, which encodes a secreted metalloprotease of the ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) family. MIG-18 is a novel secreted protein that is conserved only among nematode species. The mig-17(null) and mig-18 double mutants exhibited phenotypes similar to those in mig-17(null) single mutants. In addition, the mutations in fbl-1/fibulin-1 and let-2/collagen IV that suppress mig-17 mutations also suppressed the mig-18 mutation, suggesting that mig-18 and mig-17 function in a common genetic pathway. The Venus-MIG-18 fusion protein was secreted from muscle cells and localized to the gonadal basement membrane, a tissue distribution reminiscent of that observed for MIG-17. Overexpression of MIG-18 in mig-17 mutants and vice versa partially rescued the relevant DTC migration defects, suggesting that MIG-18 and MIG-17 act cooperatively rather than sequentially. We propose that MIG-18 may be a cofactor of MIG-17/ADAMTS that functions in the regulation of the gonadal basement membrane to achieve proper direction of DTC migration during gonadogenesis.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Movimiento Celular , Desintegrinas/metabolismo , Metaloendopeptidasas/metabolismo , Secuencia de Aminoácidos , Animales , Membrana Basal/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Movimiento Celular/genética , Desintegrinas/genética , Expresión Génica , Gónadas/metabolismo , Metaloendopeptidasas/genética , Datos de Secuencia Molecular , Mutación , Unión Proteica , Transporte de Proteínas , Alineación de Secuencia , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...