Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Mater ; 22(7): 913-924, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37386067

RESUMEN

Microtubules are cytoskeleton components with unique mechanical and dynamic properties. They are rigid polymers that alternate phases of growth and shrinkage. Nonetheless, the cells can display a subset of stable microtubules, but it is unclear whether microtubule dynamics and mechanical properties are related. Recent in vitro studies suggest that microtubules have mechano-responsive properties, being able to stabilize their lattice by self-repair on physical damage. Here we study how microtubules respond to cycles of compressive forces in living cells and find that microtubules become distorted, less dynamic and more stable. This mechano-stabilization depends on CLASP2, which relocates from the end to the deformed shaft of microtubules. This process seems to be instrumental for cell migration in confined spaces. Overall, these results demonstrate that microtubules in living cells have mechano-responsive properties that allow them to resist and even counteract the forces to which they are subjected, being a central mediator of cellular mechano-responses.


Asunto(s)
Citoesqueleto , Microtúbulos , Movimiento Celular , Polímeros , Proyectos de Investigación
2.
Polymers (Basel) ; 15(11)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37299302

RESUMEN

Carbon fibres used as a honeycomb core material (subject to a proper in-depth analysis of their reinforcement patterns) allows solving the thermo-dimensional stability problem of the units for space systems. Based on the results of numerical simulations with the support of finite element analysis, the paper provides an evaluation of the accuracy of analytical dependencies for the determination of the moduli of elasticity of a carbon fibre honeycomb core in tension/compression and shear. It is shown that a carbon fibre honeycomb reinforcement pattern has a significant impact on the mechanical performance of the carbon fibre honeycomb core. For example, for honeycombs measuring 10 mm in height, the maximum shear modulus values corresponding to the reinforcement pattern of ±45° exceed the minimum values for a reinforcement pattern of 0° and 90° by more than 5 times in the XOZ plane and 4 times for the shear modulus in the YOZ plane. The maximum modulus of the elasticity of the honeycomb core in the transverse tension, corresponding to a reinforcement pattern of ±75°, exceeds the minimum modulus for the reinforcement pattern of ±15° more than 3 times. We observe a decrease in the values of the mechanical performance of the carbon fibre honeycomb core depending on its height. With a honeycomb reinforcement pattern of ±45°, the decrease in the shear modulus is 10% in the XOZ plane and 15% in the YOZ plane. The reduction in the modulus of elasticity in the transverse tension for the reinforcement pattern does not exceed 5%. It is shown that in order to ensure high-level moduli of elasticity with respect to tension/compression and shear at the same time, it is necessary to focus on a reinforcement pattern of ±64°. The paper covers the development of the experimental prototype technology that produces carbon fibre honeycomb cores and structures for aerospace applications. It is shown by experiments that the use of a larger number of thin layers of unidirectional carbon fibres provides more than a 2-time reduction in honeycomb density while maintaining high values of strength and stiffness. Our findings can permit a significant expansion of the area of application relative to this class of honeycomb cores in aerospace engineering.

3.
Nano Lett ; 22(21): 8584-8591, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36279243

RESUMEN

Motility assays use surface-immobilized molecular motors to propel cytoskeletal filaments. They have been widely used to characterize motor properties and their impact on cytoskeletal self-organization. Moreover, the motility assays are a promising class of bioinspired active tools for nanotechnological applications. While these assays involve controlling the filament direction and speed, either as a sensory readout or a functional feature, designing a subtle control embedded in the assay is an ongoing challenge. Here, we investigate the interaction between gliding microtubules and networks of actin filaments. We demonstrate that the microtubule's behavior depends on the actin architecture. Both unbranched and branched actin decelerate microtubule gliding; however, an unbranched actin network provides additional guidance and effectively steers the microtubules. This effect, which resembles the recognition of cortical actin by microtubules, is a conceptually new means of controlling the filament gliding with potential application in the design of active materials and cytoskeletal nanodevices.


Asunto(s)
Actinas , Microtúbulos , Citoesqueleto , Citoesqueleto de Actina , Nanotecnología
4.
Proc Natl Acad Sci U S A ; 119(31): e2209522119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35878035

RESUMEN

Active cytoskeletal materials in vitro demonstrate self-organizing properties similar to those observed in their counterparts in cells. However, the search to emulate phenomena observed in living matter has fallen short of producing a cytoskeletal network that would be structurally stable yet possess adaptive plasticity. Here, we address this challenge by combining cytoskeletal polymers in a composite where self-assembling microtubules and actin filaments collectively self-organize due to the activity of microtubule-percolating molecular motors. We demonstrate that microtubules spatially organize actin filaments that in turn guide microtubules. The two networks align in an ordered fashion using this feedback loop. In this composite, actin filaments can act as structural memory and, depending on the concentration of the components, microtubules either write this memory or get guided by it. The system is sensitive to external stimuli, suggesting possible autoregulatory behavior in changing mechanochemical environments. We thus establish an artificial active actin-microtubule composite as a system demonstrating architectural stability and plasticity.


Asunto(s)
Actinas , Microtúbulos , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Actinas/química , Actinas/metabolismo , Microtúbulos/metabolismo , Estabilidad Proteica
5.
Polymers (Basel) ; 14(12)2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35745968

RESUMEN

Currently, prefabricated panel structures are typical products made of polymeric composite materials. The integrity of the composite panels, their structure and accuracy of making a contour are largely associated with the manifestation of residual technological stresses. The above phenomena and associated stress-strain behaviour inevitably occur in the process of moulding of the composite products. However, their value, nature, time of occurrence and dynamics of growth can be fully controlled and regulated. The paper deals with the study of the effect of moulding pressure on the quality of a composite product. A dependence is presented that allows us to determine the time for the degassing of the polymeric composite material package at the given temperature and pressure to obtain a monolithic and nonporous structure. It is shown that the peak of the maximum volatile-matter yield for the considered binder types lies in the temperature range where the degree of curing does not exceed 10%; that is, the viscosity values do not prevent the removal of volatile fractions. The effect of moulding pressure on the values of the volume content of the reinforcing material has been studied, and the dependence of the required thickness of the absorbent layer on the parameters of the package of polymer composite material and pressure has been obtained. The dependence of the required thickness of absorbent layer on the parameters of the package of polymeric composite material and pressure has been obtained. The mathematical model developed by us provides an opportunity to predict the stress-strain behaviour of a composite structure at any time during the moulding process. The model is closely related to chemo-viscous and thermal models. It allowed us to synthetize a method for choosing the rational parameters of the moulding process (temperature, pressure, and time), materials of additional layers and equipment. The experiments proved the presence of several defects, such as de-lamination of edges, waviness, swelling and poor adhesion of upper layers in the specimen of the composite panel cooled stepwise in the absence of the vacuum pressure. The surface quality of the specimen of the panel cooled stepwise under vacuum pressure was significantly better, and no visible defects were observed. The obtained theoretical values of deflections, considering the change in physic-mechanical characteristics that depend on the temperature and rheonomic properties of the material, showed an error that did not exceed 7%, compared to the experimental data. Our results can be applied at the enterprises engaged in designing and manufacturing panel structures of polymeric composite materials.

6.
Nat Commun ; 12(1): 4595, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34321459

RESUMEN

Constriction of the cytokinetic ring, a circular structure of actin filaments, is an essential step during cell division. Mechanical forces driving the constriction are attributed to myosin motor proteins, which slide actin filaments along each other. However, in multiple organisms, ring constriction has been reported to be myosin independent. How actin rings constrict in the absence of motor activity remains unclear. Here, we demonstrate that anillin, a non-motor actin crosslinker, indispensable during cytokinesis, autonomously propels the contractility of actin bundles. Anillin generates contractile forces of tens of pico-Newtons to maximise the lengths of overlaps between bundled actin filaments. The contractility is enhanced by actin disassembly. When multiple actin filaments are arranged into a ring, this contractility leads to ring constriction. Our results indicate that passive actin crosslinkers can substitute for the activity of molecular motors to generate contractile forces in a variety of actin networks, including the cytokinetic ring.


Asunto(s)
Actinas/metabolismo , Proteínas Contráctiles/metabolismo , Miosinas/metabolismo , Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Animales , División Celular , Proteínas Contráctiles/genética , Citocinesis , Drosophila melanogaster/metabolismo , Humanos , Proteínas de Microfilamentos
7.
PLoS One ; 14(1): e0210897, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30689638

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0086501.].

8.
Mol Pharm ; 16(2): 886-897, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30629452

RESUMEN

Skin penetration/permeation enhancers facilitate drug delivery through the skin barrier. However, the specific mechanisms that govern the enhancer interactions with the skin, drug, and donor solvent are not fully understood. We designed and synthesized fluorescent-labeled enhancers by attaching 7-nitrobenzo[c][1,2,5]oxadiazol-4-yl (NBD) groups to 6-aminohexanoic acid esters. These NBD esters (applied at a 1% concentration) enhanced the permeation of the model drugs theophylline and hydrocortisone through human skin in vitro up to 6.6- and 3.9-times, respectively. The enhancement effects were strongly affected by the ester chain length (C8-C12) and the polarity of the donor solvent. Using high-performance liquid chromatography with fluorescence detection, no NBD esters were detected in the acceptor buffer, but their hydrolysis product, NBD acid, was detected, whereas both acid and esters were found in the skin. The enhancer hydrolysis occurred in the lower stratum corneum and epidermis; more hydrophilic NBD acid, which is an inactive enhancer, penetrated deeper. This illustrates the principle of biodegradable enhancers. The enhancer concentrations in the skin depended not only on the enhancer chain length and the donor solvent, but also on the drug used. Thus, the drug, when coapplied with the enhancer, modulates the enhancer penetration into the skin and, consequently, its effect. Finally, active (NBD-C8 ester) and inactive (NBD acid) enhancers were visualized in human skin by confocal laser scanning microscopy. Both compounds were found mostly in the stratum corneum intercellular spaces, suggesting that although both are located within the skin barrier lipids, only the active ester is able to effectively interact with the lipids, which was proved by infrared spectroscopy of enhancer-treated stratum corneum. This proof-of-concept study illustrates the use of fluorescent enhancers to obtain insight into the skin penetration/permeation process; interactions among the enhancer, drug, solvent, and skin; and enhancer metabolism.


Asunto(s)
Piel/metabolismo , Solventes/química , Cromatografía Líquida de Alta Presión , Femenino , Humanos , Persona de Mediana Edad , Absorción Cutánea/fisiología
9.
Biochim Biophys Acta Mol Cell Res ; 1865(5): 734-748, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29499229

RESUMEN

γ-Tubulin is essential for microtubule nucleation and also plays less understood roles in nuclear and cell-cycle-related functions. High abundancy of γ-tubulin in acentrosomal Arabidopsis cells facilitated purification and biochemical characterization of large molecular species of γ-tubulin. TEM, fluorescence, and atomic force microscopy of purified high molecular γ-tubulin forms revealed the presence of linear filaments with a double protofilament substructure, filament bundles and aggregates. Filament formation from highly purified γ-tubulin free of γ-tubulin complex proteins (GCPs) was demonstrated for both plant and human γ-tubulin. Moreover, γ-tubulin associated with porcine brain microtubules formed oligomers. Experimental evidence on the intrinsic ability of γ-tubulin to oligomerize/polymerize was supported by conservation of α- and ß-tubulin interfaces for longitudinal and lateral interactions for γ-tubulins. STED (stimulated emission depletion) microscopy of Arabidopsis cells revealed fine, short γ-tubulin fibrillar structures enriched on mitotic microtubular arrays that accumulated at polar regions of acentrosomal spindles and the outer nuclear envelope before mitosis, and were also present in nuclei. Fine fibrillar structures of γ-tubulin representing assemblies of higher order were localized in cell-cycle-dependent manner at sites of dispersed γ-tubulin location in acentrosomal plant cells as well as at sites of local γ-tubulin enrichment after drug treatment. Our findings that γ-tubulin preserves the capability of prokaryotic tubulins to self-organize into filaments assembling by lateral interaction into bundles/clusters help understanding of the relationship between structure and multiple cellular functions of this protein species and suggest that besides microtubule nucleation and organization, γ-tubulin may also have scaffolding or sequestration functions.


Asunto(s)
Citoesqueleto/genética , Proteínas Asociadas a Microtúbulos/genética , Agregado de Proteínas/genética , Tubulina (Proteína)/genética , Citoesqueleto de Actina/química , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/ultraestructura , Arabidopsis/química , Arabidopsis/genética , Citoesqueleto/química , Proteínas Asociadas a Microtúbulos/química , Microtúbulos/química , Microtúbulos/genética , Mitosis/genética , Polimerizacion , Tubulina (Proteína)/química , Tubulina (Proteína)/ultraestructura
10.
Sci Rep ; 7(1): 4227, 2017 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-28652626

RESUMEN

The mechanical properties of microtubules are of great importance for understanding their biological function and for applications in artificial devices. Although microtubule mechanics has been extensively studied both theoretically and experimentally, the relation to its molecular structure is understood only partially. Here, we report on the structural analysis of microtubule vibration modes calculated by an atomistic approach. Molecular dynamics was applied to refine the atomic structure of a microtubule and a C α elastic network model was analyzed for its normal modes. We mapped fluctuations and local deformations up to the level of individual aminoacid residues. The deformation is mode-shape dependent and principally different in α-tubulins and ß-tubulins. Parts of the tubulin dimer sequence responding specifically to longitudinal and radial stress are identified. We show that substantial strain within a microtubule is located both in the regions of contact between adjacent dimers and in the body of tubulins. Our results provide supportive evidence for the generally accepted assumption that the mechanics of microtubules, including its anisotropy, is determined by the bonds between tubulins.


Asunto(s)
Microtúbulos/química , Simulación de Dinámica Molecular , Conformación Proteica , Tubulina (Proteína)/química , Secuencia de Aminoácidos , Aminoácidos/química , Aminoácidos/metabolismo , Animales , Anisotropía , Microtúbulos/metabolismo , Multimerización de Proteína , Estrés Mecánico , Tubulina (Proteína)/metabolismo , Vibración
11.
J Biol Phys ; 42(1): 1-8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26174548

RESUMEN

The knowledge of mechanisms underlying interactions between biological systems, be they biomacromolecules or living cells, is crucial for understanding physiology, as well as for possible prevention, diagnostics and therapy of pathological states. Apart from known chemical and direct contact electrical signaling pathways, electromagnetic phenomena were proposed by some authors to mediate non-chemical interactions on both intracellular and intercellular levels. Here, we discuss perspectives in the research of nanoscale electromagnetic interactions between biosystems on radiofrequency and microwave wavelengths. Based on our analysis, the main perspectives are in (i) the micro and nanoscale characterization of both passive and active radiofrequency properties of biomacromolecules and cells, (ii) experimental determination of viscous damping of biomacromolecule structural vibrations and (iii) detailed analysis of energetic circumstances of electromagnetic interactions between oscillating polar biomacromolecules. Current cutting-edge nanotechnology and computational techniques start to enable such studies so we can expect new interesting insights into electromagnetic aspects of molecular biophysics of cell signaling.


Asunto(s)
Microondas , Radiobiología/métodos , Sustancias Macromoleculares/metabolismo
12.
Curr Top Med Chem ; 15(6): 513-22, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25714382

RESUMEN

In this mini-review, we summarize the current hypotheses, theories and experimental evidence concerning the electromagnetic activity of living cells. We systematically classify the bio-electromagnetic phenomena in terms of frequency and we assess their general acceptance in scientific community. We show that the electromagnetic activity of cells is well established in the low frequency range below 1 kHz and on optical wavelengths, while there is only limited evidence for bio-electromagnetic processes in radio- frequency and millimeter-wave ranges. This lack of generally accepted theory or trustful experimental results is the cause for controversy which accompanies this topic. We conclude our review with the discussion of the relevance of the electromagnetic activity of cells to human medicine.


Asunto(s)
Células , Campos Electromagnéticos , Humanos , Luminiscencia , Teoría Cuántica , Análisis Espectral
13.
PLoS One ; 9(1): e86501, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24497952

RESUMEN

The regulation of chromosome separation during mitosis is not fully understood yet. Microtubules forming mitotic spindles are targets of treatment strategies which are aimed at (i) the triggering of the apoptosis or (ii) the interruption of uncontrolled cell division. Despite these facts, only few physical models relating to the dynamics of mitotic spindles exist up to now. In this paper, we present the first electromechanical model which enables calculation of the electromagnetic field coupled to acoustic vibrations of the mitotic spindle. This electromagnetic field originates from the electrical polarity of microtubules which form the mitotic spindle. The model is based on the approximation of resonantly vibrating microtubules by a network of oscillating electric dipoles. Our computational results predict the existence of a rapidly changing electric field which is generated by either driven or endogenous vibrations of the mitotic spindle. For certain values of parameters, the intensity of the electric field and its gradient reach values which may exert a not-inconsiderable force on chromosomes which are aligned in the spindle midzone. Our model may describe possible mechanisms of the effects of ultra-short electrical and mechanical pulses on dividing cells--a strategy used in novel methods for cancer treatment.


Asunto(s)
Simulación por Computador , Modelos Biológicos , Huso Acromático/fisiología , Acústica , Fenómenos Electromagnéticos , Humanos , Microtúbulos/fisiología , Mitosis
14.
Cell Commun Signal ; 11: 87, 2013 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-24219796

RESUMEN

Despite the large number of reports attributing the signaling between detached cell cultures to the electromagnetic phenomena, almost no report so far included a rigorous analysis of the possibility of such signaling.In this paper, we examine the physical feasibility of the electromagnetic communication between cells, especially through light, with regard to the ambient noise illumination. We compare theoretically attainable parameters of communication with experimentally obtained data of the photon emission from cells without a specially pronounced ability of bioluminescence.We show that the weak intensity of the emission together with an unfavorable signal-to-noise ratio, which is typical for natural conditions, represent an important obstacle to the signal detection by cells.


Asunto(s)
Comunicación Celular , Fenómenos Electromagnéticos , Luz , Transducción de Señal , Fotones , Probabilidad , Relación Señal-Ruido
15.
Biosystems ; 109(3): 346-55, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22575306

RESUMEN

Spontaneous mechanical oscillations were predicted and experimentally proven on almost every level of cellular structure. Besides morphogenetic potential of oscillatory mechanical force, oscillations may drive vibrations of electrically polar structures or these structures themselves may oscillate on their own natural frequencies. Vibrations of electric charge will generate oscillating electric field, role of which in morphogenesis is discussed in this paper. This idea is demonstrated in silico on the conformation of two growing microtubules.


Asunto(s)
Células/citología , Estructuras Celulares/fisiología , Campos Electromagnéticos , Microtúbulos/fisiología , Morfogénesis/fisiología , Vibración , Fenómenos Biomecánicos , Estructuras Celulares/ultraestructura , Microtúbulos/ultraestructura
16.
Eur Biophys J ; 40(6): 747-59, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21394502

RESUMEN

This paper describes a proposed biophysical mechanism of a novel diagnostic method for cancer detection developed recently by Vedruccio. The diagnostic method is based on frequency selective absorption of electromagnetic waves by malignant tumors. Cancer is connected with mitochondrial malfunction (the Warburg effect) suggesting disrupted physical mechanisms. In addition to decreased energy conversion and nonutilized energy efflux, mitochondrial malfunction is accompanied by other negative effects in the cell. Diminished proton space charge layer and the static electric field around the outer membrane result in a lowered ordering level of cellular water and increased damping of microtubule-based cellular elastoelectrical vibration states. These changes manifest themselves in a dip in the amplitude of the signal with the fundamental frequency of the nonlinear microwave oscillator-the core of the diagnostic device-when coupled to the investigated cancerous tissue via the near-field. The dip is not present in the case of healthy tissue.


Asunto(s)
Biofisica/métodos , Campos Electromagnéticos , Microtúbulos/efectos de la radiación , Neoplasias/diagnóstico , Neoplasias/patología , Biofisica/instrumentación , Estudios de Casos y Controles , Elasticidad , Electricidad , Humanos , Microtúbulos/química , Microtúbulos/metabolismo , Microondas , Neoplasias/metabolismo , Vibración , Agua/química , Agua/metabolismo
17.
Eur Biophys J ; 39(10): 1465-70, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20306029

RESUMEN

Electromagnetic fields generated by living cells have been experimentally investigated in the past 3 decades; however, the results are often inconsistent. In this paper we discuss some technical aspects of such challenging experiments, a brief review of which is also included. Special attention is paid to the sensor with respect to the power available from a cell and the power needed to excite the macroscopic measurement devices. We drew the conclusion that the nanoelectronic approach should be used.


Asunto(s)
Fenómenos Fisiológicos Celulares , Técnicas Citológicas/instrumentación , Campos Electromagnéticos , Técnicas Citológicas/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...