Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
AAPS PharmSciTech ; 21(5): 165, 2020 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-32500420

RESUMEN

A transdermal drug delivery system (TDDS) is generally designed to deliver an active pharmaceutical ingredient (API) through the skin for systemic action. Permeation of an API through the skin is controlled by adjusting drug concentration, formulation composition, and patch design. A bilayer, drug-in-adhesive TDDS design may allow improved modulation of the drug release profile by facilitating varying layer thicknesses and drug spatial distribution across each layer. We hypothesized that the co-release of two fixed-dose APIs from a bilayer TDDS could be controlled by modifying spatial distribution and layer thickness while maintaining the same overall formulation composition. Franz cell diffusion studies demonstrated that three different bilayer patch designs, with different spatial distribution of drug and layer thicknesses, could modulate drug permeation and be compared with a reference single-layer monolith patch design. Compared with the monolith, decreased opioid antagonist permeation while maintaining fentanyl permeation could be achieved using a bilayer design. In addition, modulation of the drug spatial distribution and individual layer thicknesses, control of each drug's permeation could be independently achieved. Bilayer patch performance did not change over an 8-week period in accelerated stability storage conditions. In conclusion, modifying the patch design of a bilayer TDDS achieves an individualized permeation of each API while maintaining constant patch composition.


Asunto(s)
Sistemas de Liberación de Medicamentos , Parche Transdérmico , Anciano , Animales , Composición de Medicamentos , Humanos , Masculino , Piel/metabolismo
2.
J Opioid Manag ; 14(6): 429-436, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30629279

RESUMEN

OBJECTIVE: These in vitro studies compared abuse-deterrent properties of REMOXY ER (extended-release oxycodone), a novel, high-viscosity gel formulation, versus the two currently marketed ER oxycodone formulations. METHODS: Tampering methods were tailored to each product to maximize oxycodone release with the least complexity, time, and effort, based on the physical/chemical properties of each formulation. Oral abuse was simulated by extracting oxycodone from each manipulated formulation in Common Ingestible Liquids and in Advanced Solvents (not ingestible and requiring additional separation). To simulate injection abuse, oxycodone was extracted from each manipulated formulation in low volumes of injection vehicles, heated or unheated. Inhalation abuse potential was assessed by volatilization. RESULTS: In oral abuse simulations, manipulated REMOXY ER released 2-22 percent of its oxycodone in 20 minutes in five Common Ingestible Liquids, versus 77-85 percent oxycodone released from OxyContin® ER in 5 minutes in four of the five. In six Advanced Solvents, REMOXY ER released 3-37 percent at 20 minutes, versus 55-89 percent released from OxyContin ER at 5 minutes. Minimal oxycodone was extracted from REMOXY ER in five injection vehicles, heated or unheated. In contrast, OxyContin ER released 65-87 percent of its oxycodone within 10 minutes in all vehicles, regardless of heating. Xtampza® ER released 96 percent of its oxycodone in a heated injection vehicle and released 50-60 percent in two unheated injection vehicles. Showing minimal inhalation abuse potential, 9 percent of oxycodone was vaporized from manipulated REMOXY ER at 20 minutes compared to 8.8 percent at 5 minutes for OxyContin ER. CONCLUSIONS: In these studies, REMOXY ER demonstrated robust and meaningful abuse-deterrence relative to OxyContin ER and Xtampza ER. PERSPECTIVE: Abuse-deterrent drugs were intended to help fight opioid abuse. Yet, the persistence of the opioid epidemic indicates that vast improvements in abuse-deterrent technology are sorely needed. A new, high-viscosity, ER oxycodone formulation showed much improved abuse-deterrent properties in simulations of oral, injection, and inhalation abuse, compared to earlier, first-generation formulations.


Asunto(s)
Embalaje de Medicamentos , Trastornos Relacionados con Opioides , Oxicodona , Analgésicos Opioides , Química Farmacéutica/métodos , Preparaciones de Acción Retardada , Humanos , Trastornos Relacionados con Opioides/tratamiento farmacológico , Oxicodona/administración & dosificación , Oxicodona/química , Viscosidad
3.
AAPS PharmSciTech ; 17(1): 167-79, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26637232

RESUMEN

Polyvinyl alcohol (PVAL) has not been investigated in a binary formulation as a concentration-enhancing polymer owing to its high melting point/high viscosity and poor organic solubility. Due to the unique attributes of the KinetiSol® dispersing (KSD) technology, PVAL has been enabled for this application and it is the aim of this paper to investigate various grades for improvement of the solubility and bioavailability of poorly water soluble active pharmaceutical ingredients. Solid amorphous dispersions were created with the model drug, itraconazole (ITZ), at a selected drug loading of 20%. Polymer grades were chosen with variation in molecular weight and degree of hydroxylation to determine the effects on performance. Differential scanning calorimetry, powder X-ray diffraction, polarized light microscopy, size exclusion chromatography, and dissolution testing were used to characterize the amorphous dispersions. An in vivo pharmacokinetic study in rats was also conducted to compare the selected formulation to current market formulations of ITZ. The 4-88 grade of PVAL was determined to be effective at enhancing solubility and bioavailability of itraconazole.


Asunto(s)
Itraconazol/química , Polímeros/química , Alcohol Polivinílico/química , Solubilidad , Agua/química , Animales , Disponibilidad Biológica , Rastreo Diferencial de Calorimetría/métodos , Química Farmacéutica/métodos , Composición de Medicamentos/métodos , Sistemas de Liberación de Medicamentos/métodos , Excipientes/química , Itraconazol/farmacocinética , Masculino , Polvos/química , Ratas , Ratas Sprague-Dawley , Difracción de Rayos X/métodos
4.
Int J Pharm ; 457(2): 428-36, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-23428882

RESUMEN

The application of a polymeric film to a solid oral dosage form can be an effective technique to modify drug release. Most polymers used for such purposes are amorphous in nature and are subject to physical aging. This physical aging phenomenon has been shown to cause changes not only in the mechanical and drug release properties of polymeric films, but also the permeability of these films due to a densification and decrease in free volume of the polymer as the material relaxes to an equilibrated thermodynamic state. Temperature, humidity, and additional excipients in the coating formulations have been shown to influence the aging process. This review article discusses the process of physical aging in films prepared from aqueous dispersions, describes various analytical techniques that can be used to investigate the aging process, and highlights strategies to prevent such aging.


Asunto(s)
Polímeros/química , Técnicas de Química Analítica , Formas de Dosificación , Estabilidad de Medicamentos , Preparaciones Farmacéuticas/química
5.
Pharm Dev Technol ; 13(3): 245-53, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18484493

RESUMEN

The objective of this study was to investigate the influence of various grades of fumed silicon dioxide on the drug release rate and physical aging of theophylline pellets coated with Eudragit RS 30 D and RL 30 D. Free films were assessed for both physicomechanical properties and water vapor permeability with respect to time and storage conditions. The release rate of theophylline was influenced by the physical properties of the silicon dioxide employed. As the particle size of the silica dioxide decreased, there was an increase in dispersion viscosity, as well as a decrease in the theophylline release rate from the coated pellets. Films prepared from formulas containing Aeroperl 300 had twice the water vapor transmission rate of films prepared from formulas containing Aerosil 200 VV and Cab-O-Sil M-5P and showed consistent moisture permeability values during storage for up to 1 month at 25 degrees C/0% relative humidity (RH). Scanning electron microscopy (SEM) imaging of pellets coated with a formulation containing Aerosil 200 VV or Cab-O-Sil M-5P demonstrated film structures that were homogenous, while those coated with a formulation containing Aeroperl 300 produced heterogeneous films with large particles of the excipient present within the polymeric matrix of the film. Stability in the drug release rate exhibited by pellets coated with a formulation containing Eudragit RS 30 D, 15% triethyl citrate (TEC), and 30% Aeroperl 300 was attributed to the stabilization of the moisture vapor transmission rate of the acrylic films. Increasing the concentration of Aeroperl 300 in the coating formulation increased the theophylline release rate from coated pellets.


Asunto(s)
Ácidos Polimetacrílicos/química , Dióxido de Silicio/química , Teofilina/administración & dosificación , Teofilina/química , Acrilatos , Fenómenos Químicos , Química Física , Estabilidad de Medicamentos , Excipientes , Látex , Microscopía Electrónica de Rastreo , Tamaño de la Partícula , Permeabilidad , Polvos , Comprimidos Recubiertos , Resistencia a la Tracción , Viscosidad , Agua/química
6.
Drug Dev Ind Pharm ; 33(7): 717-26, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17654020

RESUMEN

The objective of this study was to investigate the influence of two proteins, albumin and type B gelatin, on the physical aging of EUDRAGIT RS 30 D and RL 30 D coated theophylline pellets. The physicomechanical properties of sprayed films, thermal properties of cast films, influence of proteins on the zeta potential and particle size of the dispersion, and the release of proteins from cast films under simulated dissolution conditions were investigated. The release rate of theophylline decreased significantly over time from pellets coated with an acrylic dispersion containing 10% albumin when there was no acidification of the acrylic dispersion; however, when pellets were coated with an acidified EUDRAGIT/albumin dispersion, the theophylline release rate was stable for dosage forms stored in the absence of humidity. The drug release rate was faster for pellets coated with acrylic dispersions containing 10% gelatin compared to the albumin-containing formulations. When sprayed films were stored at 40 degrees C/75% RH, the water vapor permeability decreased significantly for both EUDRAGIT films and those containing EUDRAGIT and albumin; however, there was no significant change in this parameter when 10% gelatin was present. Albumin was released from the acrylic films when the pH of the dissolution media was below the isoelectric point of the protein while no quantitative release of gelatin was observed in pH 1.2 or 7.4 media. The effect of gelatin to prevent the decrease in drug release rate was due to stabilization in water vapor permeability of the film. Acidification of the polymeric dispersion resulted in electrostatic repulsive forces between albumin and the acrylic polymer, which stabilized the drug release rate when the dosage forms were stored in aluminum induction sealed containers at both 40 degrees C/75% RH and 25 degrees C/60% RH.


Asunto(s)
Resinas Acrílicas/química , Gelatina/química , Polímeros/química , Albúmina Sérica Bovina/química , Teofilina/química , Química Farmacéutica , Preparaciones de Acción Retardada/química , Estabilidad de Medicamentos , Almacenaje de Medicamentos , Concentración de Iones de Hidrógeno , Punto Isoeléctrico , Tamaño de la Partícula , Solubilidad , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...