Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 1136, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326316

RESUMEN

Tools based on artificial intelligence (AI) are currently revolutionising many fields, yet their applications are often limited by the lack of suitable training data in programmatically accessible format. Here we propose an effective solution to make data scattered in various locations and formats accessible for data-driven and machine learning applications using the overlay databank format. To demonstrate the practical relevance of such approach, we present the NMRlipids Databank-a community-driven, open-for-all database featuring programmatic access to quality-evaluated atom-resolution molecular dynamics simulations of cellular membranes. Cellular membrane lipid composition is implicated in diseases and controls major biological functions, but membranes are difficult to study experimentally due to their intrinsic disorder and complex phase behaviour. While MD simulations have been useful in understanding membrane systems, they require significant computational resources and often suffer from inaccuracies in model parameters. Here, we demonstrate how programmable interface for flexible implementation of data-driven and machine learning applications, and rapid access to simulation data through a graphical user interface, unlock possibilities beyond current MD simulation and experimental studies to understand cellular membranes. The proposed overlay databank concept can be further applied to other biomolecules, as well as in other fields where similar barriers hinder the AI revolution.


Asunto(s)
Inteligencia Artificial , Lípidos de la Membrana , Membrana Celular , Simulación de Dinámica Molecular , Aprendizaje Automático
2.
J Lipid Res ; 64(5): 100356, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36948272

RESUMEN

Omega-O-acyl ceramides such as 32-linoleoyloxydotriacontanoyl sphingosine (Cer[EOS]) are essential components of the lipid skin barrier, which protects our body from excessive water loss and the penetration of unwanted substances. These ceramides drive the lipid assembly to epidermal-specific long periodicity phase (LPP), structurally much different than conventional lipid bilayers. Here, we synthesized Cer[EOS] with selectively deuterated segments of the ultralong N-acyl chain or deuterated or 13C-labeled linoleic acid and studied their molecular behavior in a skin lipid model. Solid-state 2H NMR data revealed surprising molecular dynamics for the ultralong N-acyl chain of Cer[EOS] with increased isotropic motion toward the isotropic ester-bound linoleate. The sphingosine moiety of Cer[EOS] is also highly mobile at skin temperature, in stark contrast to the other LPP components, N-lignoceroyl sphingosine acyl, lignoceric acid, and cholesterol, which are predominantly rigid. The dynamics of the linoleic chain is quantitatively described by distributions of correlation times and using dynamic detector analysis. These NMR results along with neutron diffraction data suggest an LPP structure with alternating fluid (sphingosine chain-rich), rigid (acyl chain-rich), isotropic (linoleate-rich), rigid (acyl-chain rich), and fluid layers (sphingosine chain-rich). Such an arrangement of the skin barrier lipids with rigid layers separated with two different dynamic "fillings" i) agrees well with ultrastructural data, ii) satisfies the need for simultaneous rigidity (to ensure low permeability) and fluidity (to ensure elasticity, accommodate enzymes, or antimicrobial peptides), and iii) offers a straightforward way to remodel the lamellar body lipids into the final lipid barrier.


Asunto(s)
Ácido Linoleico , Simulación de Dinámica Molecular , Esfingosina/análisis , Piel/química , Epidermis , Ceramidas/química
3.
ACS Omega ; 8(1): 422-435, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36643519

RESUMEN

Ceramides belong to sphingolipids, an important group of cellular and extracellular lipids. Their physiological functions range from cell signaling to participation in the formation of barriers against water evaporation. In the skin, they are essential for the permeability barrier, together with free fatty acids and cholesterol. We examined the periodical structure and permeability of lipid films composed of ceramides (Cer; namely, N-lignoceroyl 6-hydroxysphingosine, CerNH24, and N-lignoceroyl sphingosine, CerNS24), lignoceric acid (LIG; 24:0), and cholesterol (Chol). X-ray diffraction experiments showed that the CerNH24-based samples form either a short lamellar phase (SLP, d ∼ 5.4 nm) or a medium lamellar phase (MLP, d = 10.63-10.78 nm) depending on the annealing conditions. The proposed molecular arrangement of the MLP based on extended Cer molecules also agreed with the relative neutron scattering length density profiles obtained from the neutron diffraction data. The presence of MLP increased the lipid film permeability to the lipophilic model permeant (indomethacin) relative to the CerNS24-based control samples and the samples that had the same lipid composition but formed an SLP. Thus, the arrangement of lipids in various nanostructures is responsive to external conditions during sample preparation. This polymorphic behavior directly affects the barrier properties, which could also be (patho)physiologically relevant.

4.
Gen Physiol Biophys ; 42(1): 59-66, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36705305

RESUMEN

Amyloid-ß peptide interactions with model lipid membranes have been studied by means of small angle neutron scattering and molecular dynamics simulations. These interactions had been indicated recently as an origin of the membrane structure reorganizations between spherical small unilamellar vesicles and planar bicelle-like structures. In present work, we investigate the influence of charge on the peptide-triggered morphological changes by introducing the anionic lipid DMPS to the underlying DMPC membrane. Changes to the membrane thickness and the overall membrane structure with and without Aß25-35 incorporated have been investigated over a wide range of temperatures. Our results document the previously reported morphological reformations between bicelle-like structures present in gel phase and small unilamellar vesicles present in fluid phase to be independent from the charge existence in the system.


Asunto(s)
Simulación de Dinámica Molecular , Liposomas Unilamelares , Liposomas Unilamelares/química , Lípidos/química , Membrana Dobles de Lípidos/química
5.
Front Mol Biosci ; 9: 926591, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35898308

RESUMEN

Combining small-angle neutron scattering (SANS), small-angle X-ray scattering (SAXS), and densitometric measurements, we have studied the interactions of the divalent cations Ca2+ and Mg2+ with the lipid vesicles prepared of a mixed-chain palmitoyl-oleoyl-phosphatidylcholine (POPC) at 25°C. The structural parameters of the POPC bilayer, such as the bilayer thickness, lateral area, and volume per lipid, displayed no changes upon the ion addition at concentrations up to 30 mM and minor changes at > 30 mM Ca2+ and Mg2+, while some decrease in the vesicle radius was observed over the entire concentration range studied. This examination allows us to validate the concept of lipid-ion interactions governed by the area per lipid suggested previously and to propose the mixed mode of those interactions that emerge in the POPC vesicles. We speculate that the average area per POPC lipid that corresponds to the cutoff length of lipid-ion interactions generates an equal but opposite impact on ion bridges and separate lipid-ion pairs. As a result of the dynamic equilibrium, the overall structural properties of bilayers are not affected. As the molecular mechanism proposed is affected by the structural properties of a particular lipid, it might help us to understand the fundamentals of processes occurring in complex multicomponent membrane systems.

6.
Sci Rep ; 11(1): 21990, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34754013

RESUMEN

The amyloid-beta peptide (Aß) is considered a key factor in Alzheimer's disease (AD) ever since the discovery of the disease. The understanding of its damaging influence has however shifted recently from large fibrils observed in the inter-cellular environment to the small oligomers interacting with a cell membrane. We studied the effect of temperature on the latter interactions by evaluating the structural characteristics of zwitterionic phosphatidylcholine (PC) membranes with incorporated Aß25-35 peptide. By means of small angle neutron scattering (SANS), we have observed for the first time a spontaneous reformation of extruded unilamellar vesicles (EULVs) to discoidal bicelle-like structures (BLSs) and small unilamellar vesicles (SULVs). These changes in the membrane self-organization happen during the thermodynamic phase transitions of lipids and only in the presence of the peptide. We interpret the dramatic changes in the membrane's overall shape with parallel changes in its thickness as the Aß25-35 triggered membrane damage and a consequent reorganization of its structure. The suggested process is consistent with an action of separate peptides or small size peptide oligomers rather than the result of large Aß fibrils.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Lípidos de la Membrana/metabolismo , Fragmentos de Péptidos/metabolismo , Temperatura , Membrana Dobles de Lípidos/metabolismo , Neutrones , Dispersión del Ángulo Pequeño , Termodinámica
7.
Eur Biophys J ; 50(7): 1025-1035, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34357445

RESUMEN

The effect of melatonin and/or cholesterol on the structural properties of a model lipid bilayer prepared from 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) has been investigated both experimentally and via molecular dynamics (MD) simulations. Neutron reflectometry experiments performed with single supported membranes revealed changes in lipid bilayer thickness upon the introduction of additional components. While the presence of cholesterol led to an increase in membrane thickness, the opposite effect was observed in the case of melatonin. The results obtained are in a good agreement with MD simulations which provided further information on the organization of components within the systems examined, indicating a mechanism underlying the membranes' thickness changes due to cholesterol and melatonin that had been observed experimentally. Cholesterol and melatonin preferentially accumulate in different membrane regions, presumably affecting the conformation of lipid hydrophobic moieties differently, and in turn having distinct impacts on the structure of the entire membrane. Our findings may be relevant for understanding the effects of age-related changes in cholesterol and melatonin concentrations, including those in the brains of individuals with Alzheimer's disease.


Asunto(s)
Melatonina , Colesterol , Humanos , Membrana Dobles de Lípidos , Simulación de Dinámica Molecular , Fosfatidilcolinas
8.
Biochim Biophys Acta Biomembr ; 1863(9): 183651, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34023300

RESUMEN

We have studied the impact of cholesterol and/or melatonin on the static and dynamical properties of bilayers made of DPPC or DOPC utilizing neutron scattering techniques, Raman spectroscopy and molecular dynamics simulations. While differing in the amplitude of the effect due to cholesterol or melatonin when comparing their interactions with the two lipids, their addition ensued recognizable changes to both types of bilayers. As expected, based on the two-component systems of lipid/cholesterol or lipid/melatonin studied previously, we show the impact of cholesterol and melatonin being opposite and competitive in the case of three-component systems of lipid/cholesterol/melatonin. The effect of cholesterol appears to prevail over that of melatonin in the case of structural properties of DPPC-based bilayers, which can be explained by its interactions targeting primarily the saturated lipid chains. The dynamics of hydrocarbon chains represented by the ratio of trans/gauche conformers reveals the competitive effect of cholesterol and melatonin being somewhat more balanced. The additive yet opposing effects of cholesterol and melatonin have been observed also in the case of structural properties of DOPC-based bilayers. We report that cholesterol induced an increase in bilayer thickness, while melatonin induced a decrease in bilayer thickness in the three-component systems of DOPC/cholesterol/melatonin. Commensurately, by evaluating the projected area of DOPC, we demonstrate a lipid area decrease with an increasing concentration of cholesterol, and a lipid area increase with an increasing concentration of melatonin. The demonstrated condensing effect of cholesterol and the fluidizing effect of melatonin appear in an additive manner upon their mutual presence.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina/análogos & derivados , Colesterol/química , Melatonina/química , Fosfatidilcolinas/química , 1,2-Dipalmitoilfosfatidilcolina/química , Simulación de Dinámica Molecular , Difracción de Neutrones , Dispersión del Ángulo Pequeño
9.
Langmuir ; 37(1): 278-288, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33356308

RESUMEN

Interactions of the divalent cations Ca2+ and Mg2+ with the zwitterionic lipid bilayers prepared of a fully saturated dipalmitoylphosphatidylcholine (DPPC) or a di-monounsaturated dioleoylphosphatidylcholine (DOPC) were studied by using the neutron scattering methods and molecular dynamics simulations. The effect on the bilayer structural properties confirms the direct interactions in all cases studied. The changes are observed in the bilayer thickness and lateral area. The extent of these structural changes, moreover, suggests various mechanisms of the cation-lipid interactions. First, we have observed a small difference when studying DPPC bilayers in the gel and fluid phases, with somewhat larger effects in the former case. Second, the hydration proved to be a factor in the case of DOPC bilayers, with the larger effects in the case of less hydrated systems. Most importantly, however, there was a qualitative difference between the results of the fully hydrated DOPC bilayers and the others examined. These observations then prompt us to suggest an interaction model that is plausibly governed by the lateral area of lipid, though affected indirectly also by the hydration level. Namely, when the interlipid distance is small enough to allow for the multiple lipid-ion interactions, the lipid-ion-lipid bridges are formed. The bridges impose strong attractions that increase the order of lipid hydrocarbon chains, resulting in the bilayer thickening. In the other case, when the interlipid distance extends beyond a limiting length corresponding to the area per lipid of ∼65 Å2, Mg2+ and Ca2+ continue to interact with the lipid groups by forming the separate ion-lipid pairs. As the interactions proposed affect the lipid membrane structure in the lateral direction, they may prove to play their role in other mechanisms lying within the membrane multicomponent systems and regulating for example the lipid-peptide-ion interactions.

10.
J Phys Chem B ; 124(25): 5186-5200, 2020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-32468822

RESUMEN

We have determined the fluid bilayer structure of palmitoyl sphingomyelin (PSM) and stearoyl sphingomyelin (SSM) by simultaneously analyzing small-angle neutron and X-ray scattering data. Using a newly developed scattering density profile (SDP) model for sphingomyelin lipids, we report structural parameters including the area per lipid, total bilayer thickness, and hydrocarbon thickness, in addition to lipid volumes determined by densitometry. Unconstrained all-atom simulations of PSM bilayers at 55 °C using the C36 CHARMM force field produced a lipid area of 56 Å2, a value that is 10% lower than the one determined experimentally by SDP analysis (61.9 Å2). Furthermore, scattering form factors calculated from the unconstrained simulations were in poor agreement with experimental form factors, even though segmental order parameter (SCD) profiles calculated from the simulations were in relatively good agreement with SCD profiles obtained from NMR experiments. Conversely, constrained area simulations at 61.9 Å2 resulted in good agreement between the simulation and experimental scattering form factors, but not with SCD profiles from NMR. We discuss possible reasons for the discrepancies between these two types of data that are frequently used as validation metrics for molecular dynamics force fields.


Asunto(s)
Membrana Dobles de Lípidos , Esfingomielinas , Simulación de Dinámica Molecular , Estructura Molecular , Neutrones , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Rayos X
11.
Gen Physiol Biophys ; 39(2): 135-144, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32329441

RESUMEN

The structure and dynamics of membranes depend on many external and internal factors that in turn determine their biological functions. One of the widely accepted and studied characteristics of biomembranes is their fluidity. We research a simple system with variable fluidity tweakable via its composition. The addition of cholesterol is employed to increase the order of lipid chains, thus decreasing the membrane fluidity, while melatonin is shown to elevate the chain disorder, thus also the membrane fluidity. We utilize the densitometric measurements to show a shift of studied systems closer or further from the gel-to-fluid phase transition. The structural changes represented by changes to membrane thickness are evaluated from small angle neutron scattering. Finally, we look at the ability of the two additives to control the interactions between membrane and amyloid-beta peptides. Our results suggest that fluidizing effect of melatonin can promote an insertion of peptide within the membrane interior. Intriguingly, the latter structure relates possibly to an Alzheimer's disease preventing mechanism postulated in the case of melatonin.


Asunto(s)
Colesterol/química , Melatonina/química , Fluidez de la Membrana , Péptidos beta-Amiloides/química , Membrana Dobles de Lípidos/química , Conformación Molecular , Fosfatidilcolinas/química
12.
Chem Phys Lipids ; 229: 104892, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32061581

RESUMEN

We present the detailed structural analysis of polyunsaturated fatty acid-containing phospholipids namely, 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (PDPC) and 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (SDPC). A newly developed molecular dynamics (MD) simulation parsing scheme for lipids containing fatty acids with multiple double bonds was implemented into the scattering density profile (SDP) model to simultaneously refine differently contrasted neutron and X-ray scattering data. SDP analyses of scattering data at 30 °C yielded lipid areas of 71.1 Å2 and 70.4 Å2 for PDPC and SDPC bilayers, respectively, and a model free analysis of PDPC at 30 °C resulted in a lipid area of 72 Å2. In addition to bilayer structural parameters, using area-constrained MD simulations we determined the area compressibility modulus, KA, to be 246.4 mN/m, a value similar to other neutral phospholipids.


Asunto(s)
Ácidos Grasos Insaturados/química , Membrana Dobles de Lípidos/química , Difracción de Neutrones , Difracción de Rayos X , Simulación de Dinámica Molecular , Fosfolípidos/química , Dispersión del Ángulo Pequeño
13.
Sci Rep ; 9(1): 15852, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31676829

RESUMEN

Structural characteristics of nanocomposite series consisting of iron oxide nanoparticles (NPs) embedded in the regular pores of amorphous silica matrix (SBA-15) were investigated by means of small angle neutron scattering (SANS). By virtue of unique neutron properties, insight into the inner structure and matter organization of this kind of systems was facilitated for the first time. Based on rigorous experimental support, fundamental model describing the neutron scattering intensity distribution was proposed by assuming general composite structural features. Model application to SANS data confirmed the presence of iron oxide NPs in the body of examined matrices, providing additional information on their shape, concentration and size distribution. Scattering superposition principle employed in the model conception allows for tailoring its fundamental characteristics, and renders it a potent and versatile tool for a wide range of applications.

14.
Chem Phys Lipids ; 221: 140-144, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30951712

RESUMEN

Various experimental data reveal intriguing peculiarities in structural properties of biomimetic membranes. Interestingly, one of the common alterations that is observed at the membrane-water interface underlines the important role of membrane hydration properties. A plausible mechanism of action in the case of many membrane additives seems to be in shifting the water encroachment the way that bilayers absorb more or less water molecules - one of the smallest and often neglected biomolecule. The difference in water interactions with different lipids and cholesterol has been noted at the interface and up to the bilayer center, the ion depending interplay between lipid-water and ion-water hydrations has been shown, and the anaesthetic effect also appears to link tightly to hydration, to discuss but a few examples. Although a complete understanding of the physicochemical processes taking place in biomembranes is not established fully, the understanding of lipid bilayer structural changes as a result of different properties of environment outside and/or inside the membrane provides a foundation for better insights into the structure-function relationships that most certainly take place in complex biomembrane systems.


Asunto(s)
Membrana Dobles de Lípidos , Agua , Colesterol/química , Colesterol/metabolismo , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Agua/química , Agua/metabolismo
15.
J Lipid Res ; 60(5): 963-971, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30885924

RESUMEN

Membrane models of the stratum corneum (SC) lipid barrier, either healthy or affected by recessive X-linked ichthyosis, constructed from ceramide [Cer; nonhydroxyacyl sphingosine N-tetracosanoyl-d-erythro-sphingosine (CerNS24) alone or with omega-O-acylceramide N-(32-linoleyloxy)dotriacontanoyl-d-erythro-sphingosine (CerEOS)], FFAs(C16-24), cholesterol (Chol), and sodium cholesteryl sulfate (CholS) were investigated. X-ray diffraction (XRD) revealed a previously unreported polymorphism of the membranes. In the absence of CerEOS, the membranes formed a short lamellar phase (SLP; the repeat distance d = 5.3 nm), a medium lamellar phase (MLP; d = 10.6 nm), or very long lamellar phases (VLLP; d = 15.9 and 21.2 nm). An increased CholS-to-Chol ratio modulated the membrane polymorphism, although the CholS phase separated at ≥ 7 weight% (of total lipids). The presence of CerEOS led to the stable long lamellar phase (LLP) with d = 12.2 nm and prevented VLLP formation. Our XRD results agree well with recently published cryo-electron microscopy data for vitreous skin sections, while also revealing new structures. Thus, lamellar phases with long repeat distances (MLP and VLLP) may be formed in the absence of omega-O-acylceramide, whereas these ultralong Cer species likely stabilize the final SC lipid architecture of LLP by riveting the adjacent lipid layers.


Asunto(s)
Ictiosis Ligada al Cromosoma X/metabolismo , Lípidos de la Membrana/metabolismo , Modelos Biológicos , Piel/química , Microscopía por Crioelectrón , Humanos , Ictiosis Ligada al Cromosoma X/genética , Ictiosis Ligada al Cromosoma X/patología , Lípidos de la Membrana/química , Piel/metabolismo , Piel/patología
16.
Molecules ; 22(12)2017 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-29182554

RESUMEN

We investigate the structural changes to lipid membrane that ensue from the addition of aliphatic alcohols with various alkyl tail lengths. Small angle neutron diffraction from flat lipid bilayers that are hydrated through water vapor has been employed to eliminate possible artefacts of the membrane curvature and the alcohol's membrane-water partitioning. We have observed clear changes to membrane structure in both transversal and lateral directions. Most importantly, our results suggest the alteration of the membrane-water interface. The water encroachment has shifted in the way that alcohol loaded bilayers absorbed more water molecules when compared to the neat lipid bilayers. The experimental results have been corroborated by molecular dynamics simulations to reveal further details. Namely, the order parameter profiles have been fruitful in correlating the mechanical model of structural changes to the effect of anesthesia.


Asunto(s)
Alcoholes/química , Membrana Dobles de Lípidos/química , Algoritmos , Lípidos/química , Modelos Químicos , Conformación Molecular , Simulación de Dinámica Molecular
17.
Langmuir ; 33(12): 3134-3141, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28277666

RESUMEN

Interactions of calcium (Ca2+) and zinc (Zn2+) cations with biomimetic membranes made of dipalmitoylphosphatidylcholine (DPPC) were studied by small angle neutron diffraction (SAND). Experiments show that the structure of these lipid bilayers is differentially affected by the two divalent cations. Initially, both Ca2+ and Zn2+ cause DPPC bilayers to thicken, while further increases in Ca2+ concentration result in the bilayer thinning, eventually reverting to having the same thickness as pure DPPC. The binding of Zn2+, on the other hand, causes the bilayers to swell to a maximum thickness, and the addition of more Zn2+ does not result in a further thickening of the membrane. Agreement between our results obtained using oriented planar membranes and those from vesicular samples implies that the effect of cations on bilayer thickness is the result of electrostatic interactions, rather than geometrical constraints due to bilayer curvature. This notion is further reinforced by MD simulations. Finally, the radial distribution functions reveal a strong interaction between Ca2+ and the phosphate oxygens, while Zn2+ shows a much weaker binding specificity.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina/química , Calcio/química , Membrana Dobles de Lípidos/química , Zinc/química , Materiales Biomiméticos/química , Simulación de Dinámica Molecular
18.
Chem Phys Lipids ; 199: 17-25, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27056099

RESUMEN

It is well known that cholesterol modifies the physical properties of lipid bilayers. For example, the much studied liquid-ordered Lo phase contains rapidly diffusing lipids with their acyl chains in the all trans configuration, similar to gel phase bilayers. Moreover, the Lo phase is commonly associated with cholesterol-enriched lipid rafts, which are thought to serve as platforms for signaling proteins in the plasma membrane. Cholesterol's location in lipid bilayers has been studied extensively, and it has been shown - at least in some bilayers - to align differently from its canonical upright orientation, where its hydroxyl group is in the vicinity of the lipid-water interface. In this article we review recent works describing cholesterol's location in different model membrane systems with emphasis on results obtained from scattering, spectroscopic and molecular dynamics studies.


Asunto(s)
Colesterol/metabolismo , Membrana Dobles de Lípidos/metabolismo , Colesterol/química , Membrana Dobles de Lípidos/química , Fosfolípidos/química , Fosfolípidos/metabolismo
19.
Biophys J ; 109(8): 1608-18, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26488652

RESUMEN

The presumptive function for alpha-tocopherol (αtoc) in membranes is to protect polyunsaturated lipids against oxidation. Although the chemistry of the process is well established, the role played by molecular structure that we address here with atomistic molecular-dynamics simulations remains controversial. The simulations were run in the constant particle NPT ensemble on hydrated lipid bilayers composed of SDPC (1-stearoyl-2-docosahexaenoylphosphatidylcholine, 18:0-22:6PC) and SOPC (1-stearoyl-2-oleoylphosphatidylcholine, 18:0-18:1PC) in the presence of 20 mol % αtoc at 37°C. SDPC with SA (stearic acid) for the sn-1 chain and DHA (docosahexaenoic acid) for the sn-2 chain is representative of polyunsaturated phospholipids, while SOPC with OA (oleic acid) substituted for the sn-2 chain serves as a monounsaturated control. Solid-state (2)H nuclear magnetic resonance and neutron diffraction experiments provide validation. The simulations demonstrate that high disorder enhances the probability that DHA chains at the sn-2 position in SDPC rise up to the bilayer surface, whereby they encounter the chromanol group on αtoc molecules. This behavior is reflected in the van der Waals energy of interaction between αtoc and acyl chains, and illustrated by density maps of distribution for acyl chains around αtoc molecules that were constructed. An ability to more easily penetrate deep into the bilayer is another attribute conferred upon the chromanol group in αtoc by the high disorder possessed by DHA. By examining the trajectory of single molecules, we found that αtoc flip-flops across the SDPC bilayer on a submicrosecond timescale that is an order-of-magnitude greater than in SOPC. Our results reveal mechanisms by which the sacrificial hydroxyl group on the chromanol group can trap lipid peroxyl radicals within the interior and near the surface of a polyunsaturated membrane. At the same time, water-soluble reducing agents that regenerate αtoc can access the chromanol group when it locates at the surface.


Asunto(s)
Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Oxidación-Reducción , Fosfolípidos/química , alfa-Tocoferol/química , Peroxidación de Lípido , Espectroscopía de Resonancia Magnética , Difracción de Neutrones
20.
Membranes (Basel) ; 5(3): 454-72, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26402708

RESUMEN

We review recent developments in the rapidly growing field of membrane biophysics, with a focus on the structural properties of single lipid bilayers determined by different scattering techniques, namely neutron and X-ray scattering. The need for accurate lipid structural properties is emphasized by the sometimes conflicting results found in the literature, even in the case of the most studied lipid bilayers. Increasingly, accurate and detailed structural models require more experimental data, such as those from contrast varied neutron scattering and X-ray scattering experiments that are jointly refined with molecular dynamics simulations. This experimental and computational approach produces robust bilayer structural parameters that enable insights, for example, into the interplay between collective membrane properties and its components (e.g., hydrocarbon chain length and unsaturation, and lipid headgroup composition). From model studies such as these, one is better able to appreciate how a real biological membrane can be tuned by balancing the contributions from the lipid's different moieties (e.g., acyl chains, headgroups, backbones, etc.).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA