Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(31): 9459-9467, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39042710

RESUMEN

Heterostructures (HSs) formed by the transition-metal dichalcogenide materials have shown great promise in next-generation (opto)electronic applications. An artificially twisted HS allows us to manipulate the optical and electronic properties. In this work, we introduce the understanding of the energy transfer (ET) process governed by the dipolar interaction in a twisted molybdenum diselenide (MoSe2) homobilayer without any charge-blocking interlayer. We fabricated an unconventional homobilayer (i.e., HS) with a large twist angle (∼57°) by combining the chemical vapor deposition (CVD) and mechanical exfoliation (Exf.) techniques to fully exploit the lattice parameter mismatch and indirect/direct (CVD/Exf.) bandgap nature. These effectively weaken the interlayer charge transfer and allow the ET to control the carrier recombination channels. Our experimental and theoretical results explain a massive HS photoluminescence enhancement due to an efficient ET process. This work shows that the electronically decoupled MoSe2 homobilayer is coupled by the ET process, mimicking a "true" heterobilayer nature.

2.
ACS Omega ; 8(47): 44745-44750, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38046332

RESUMEN

We investigate the feasibility of the epitaxial growth of a three-dimensional semiconductor on a two-dimensional substrate. In particular, we report for the first time the molecular beam epitaxy growth of cadmium telluride (CdTe) quantum wells on hexagonal boron nitride (hBN). The presence of the quantum wells is confirmed by photoluminescence measurements conducted at helium temperatures. Growth of the quantum wells on two-dimensional, almost perfectly flat hBN appears to be very different from growth on bulk substrates; in particular, it requires 70-100 °C lower temperatures.

3.
Nano Lett ; 20(5): 3058-3066, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32105481

RESUMEN

Monolayer transition-metal dichalcogenides (TMDs) manifest exceptional optical properties related to narrow excitonic resonances. However, these properties have been so far explored only for structures produced by techniques inducing considerable large-scale inhomogeneity. In contrast, techniques which are essentially free from this disadvantage, such as molecular beam epitaxy (MBE), have to date yielded only structures characterized by considerable spectral broadening, which hinders most of the interesting optical effects. Here, we report for the first time on the MBE-grown TMD exhibiting narrow and resolved spectral lines of neutral and charged exciton. Moreover, our material exhibits unprecedented high homogeneity of optical properties, with variation of the exciton energy as small as ±0.16 meV over a distance of tens of micrometers. Our recipe for MBE growth is presented for MoSe2 and includes the use of atomically flat hexagonal boron nitride substrate. This recipe opens a possibility of producing TMD heterostructures with optical quality, dimensions, and homogeneity required for optoelectronic applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...