Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Host Microbe ; 29(9): 1407-1420.e5, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34348092

RESUMEN

The parasite Cryptosporidium invades and replicates in intestinal epithelial cells and is a leading cause of diarrheal disease and early childhood mortality. The molecular mechanisms that underlie infection and pathogenesis are largely unknown. Here, we delineate the events of host cell invasion and uncover a mechanism unique to Cryptosporidium. We developed a screen to identify parasite effectors, finding the injection of multiple parasite proteins into the host from the rhoptry organelle. These factors are targeted to diverse locations within the host cell and its interface with the parasite. One identified effector, rhoptry protein 1 (ROP1), accumulates in the terminal web of enterocytes through direct interaction with the host protein LIM domain only 7 (LMO7) an organizer of epithelial cell polarity and cell-cell adhesion. Genetic ablation of LMO7 or ROP1 in mice or parasites, respectively, impacts parasite burden in vivo in opposite ways. Taken together, these data provide molecular insight into how Cryptosporidium manipulates its intestinal host niche.


Asunto(s)
Criptosporidiosis/patología , Cryptosporidium parvum/patogenicidad , Enterocitos/parasitología , Proteínas con Dominio LIM/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Protozoarias/metabolismo , Factores de Transcripción/metabolismo , Animales , Células CACO-2 , Adhesión Celular/fisiología , Línea Celular , Modelos Animales de Enfermedad , Enterocitos/citología , Células Epiteliales/parasitología , Células HEK293 , Interacciones Huésped-Parásitos/fisiología , Humanos , Proteínas con Dominio LIM/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Orgánulos/metabolismo , Factores de Transcripción/genética
2.
JCO Oncol Pract ; 17(12): e1879-e1886, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34133219

RESUMEN

PURPOSE: Multiple studies have demonstrated the negative impact of cancer care delays during the COVID-19 pandemic, and transmission mitigation techniques are imperative for continued cancer care delivery. We aimed to gauge the effectiveness of these measures at the University of Pennsylvania. METHODS: We conducted a longitudinal study of SARS-CoV-2 antibody seropositivity and seroconversion in patients presenting to infusion centers for cancer-directed therapy between May 21, 2020, and October 8, 2020. Participants completed questionnaires and had up to five serial blood collections. RESULTS: Of 124 enrolled patients, only two (1.6%) had detectable SARS-CoV-2 antibodies on initial blood draw, and no initially seronegative patients developed newly detectable antibodies on subsequent blood draw(s), corresponding to a seroconversion rate of 0% (95% CI, 0.0 TO 4.1%) over 14.8 person-years of follow up, with a median of 13 health care visits per patient. CONCLUSION: These results suggest that patients with cancer receiving in-person care at a facility with aggressive mitigation efforts have an extremely low likelihood of COVID-19 infection.


Asunto(s)
COVID-19 , Neoplasias , Humanos , Estudios Longitudinales , Neoplasias/terapia , Pandemias , SARS-CoV-2 , Seroconversión
3.
Nat Med ; 27(7): 1280-1289, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34017137

RESUMEN

Patients with cancer have high mortality from coronavirus disease 2019 (COVID-19), and the immune parameters that dictate clinical outcomes remain unknown. In a cohort of 100 patients with cancer who were hospitalized for COVID-19, patients with hematologic cancer had higher mortality relative to patients with solid cancer. In two additional cohorts, flow cytometric and serologic analyses demonstrated that patients with solid cancer and patients without cancer had a similar immune phenotype during acute COVID-19, whereas patients with hematologic cancer had impairment of B cells and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific antibody responses. Despite the impaired humoral immunity and high mortality in patients with hematologic cancer who also have COVID-19, those with a greater number of CD8 T cells had improved survival, including those treated with anti-CD20 therapy. Furthermore, 77% of patients with hematologic cancer had detectable SARS-CoV-2-specific T cell responses. Thus, CD8 T cells might influence recovery from COVID-19 when humoral immunity is deficient. These observations suggest that CD8 T cell responses to vaccination might provide protection in patients with hematologic cancer even in the setting of limited humoral responses.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , Neoplasias Hematológicas/inmunología , Neoplasias/inmunología , Anciano , Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , COVID-19/complicaciones , COVID-19/mortalidad , Estudios de Cohortes , Femenino , Neoplasias Hematológicas/complicaciones , Humanos , Inmunidad Celular/inmunología , Inmunidad Humoral/inmunología , Inmunofenotipificación , Modelos Logísticos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Neoplasias/complicaciones , Modelos de Riesgos Proporcionales , Estudios Prospectivos , SARS-CoV-2 , Tasa de Supervivencia
4.
Res Sq ; 2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33564756

RESUMEN

Cancer patients have increased morbidity and mortality from Coronavirus Disease 2019 (COVID-19), but the underlying immune mechanisms are unknown. In a cohort of 100 cancer patients hospitalized for COVID-19 at the University of Pennsylvania Health System, we found that patients with hematologic cancers had a significantly higher mortality relative to patients with solid cancers after accounting for confounders including ECOG performance status and active cancer status. We performed flow cytometric and serologic analyses of 106 cancer patients and 113 non-cancer controls from two additional cohorts at Penn and Memorial Sloan Kettering Cancer Center. Patients with solid cancers exhibited an immune phenotype similar to non-cancer patients during acute COVID-19 whereas patients with hematologic cancers had significant impairment of B cells and SARS-CoV-2-specific antibody responses. High dimensional analysis of flow cytometric data revealed 5 distinct immune phenotypes. An immune phenotype characterized by CD8 T cell depletion was associated with a high viral load and the highest mortality of 71%, among all cancer patients. In contrast, despite impaired B cell responses, patients with hematologic cancers and preserved CD8 T cells had a lower viral load and mortality. These data highlight the importance of CD8 T cells in acute COVID-19, particularly in the setting of impaired humoral immunity. Further, depletion of B cells with anti-CD20 therapy resulted in almost complete abrogation of SARS-CoV-2-specific IgG and IgM antibodies, but was not associated with increased mortality compared to other hematologic cancers, when adequate CD8 T cells were present. Finally, higher CD8 T cell counts were associated with improved overall survival in patients with hematologic cancers. Thus, CD8 T cells likely compensate for deficient humoral immunity and influence clinical recovery of COVID-19. These observations have important implications for cancer and COVID-19-directed treatments, immunosuppressive therapies, and for understanding the role of B and T cells in acute COVID-19.

5.
medRxiv ; 2021 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-33469597

RESUMEN

Multiple studies have demonstrated the negative impact of cancer care delays during the COVID-19 pandemic, and transmission mitigation techniques are imperative for continued cancer care delivery. To gauge the effectiveness of these measures at the University of Pennsylvania, we conducted a longitudinal study of SARS-CoV-2 antibody seropositivity and seroconversion in patients presenting to infusion centers for cancer-directed therapy between 5/21/2020 and 10/8/2020. Participants completed questionnaires and had up to five serial blood collections. Of 124 enrolled patients, only two (1.6%) had detectable SARS-CoV-2 antibodies on initial blood draw, and no initially seronegative patients developed newly detectable antibodies on subsequent blood draw(s), corresponding to a seroconversion rate of 0% (95%CI 0.0-4.1%) over 14.8 person-years of follow up, with a median of 13 healthcare visits per patient. These results suggest that cancer patients receiving in-person care at a facility with aggressive mitigation efforts have an extremely low likelihood of COVID-19 infection.

6.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33372132

RESUMEN

The apicomplexan parasite Cryptosporidium infects the intestinal epithelium. While infection is widespread around the world, children in resource-poor settings suffer a disproportionate disease burden. Cryptosporidiosis is a leading cause of diarrheal disease, responsible for mortality and stunted growth in children. CD4 T cells are required to resolve this infection, but powerful innate mechanisms control the parasite prior to the onset of adaptive immunity. Here, we use the natural mouse pathogen Cryptosporidium tyzzeri to demonstrate that the inflammasome plays a critical role in initiating this early response. Mice lacking core inflammasome components, including caspase-1 and apoptosis-associated speck-like protein, show increased parasite burden and caspase 1 deletion solely in enterocytes phenocopies whole-body knockout (KO). This response was fully functional in germfree mice and sufficient to control Cryptosporidium infection. Inflammasome activation leads to the release of IL-18, and mice that lack IL-18 are more susceptible to infection. Treatment of infected caspase 1 KO mice with recombinant IL-18 is remarkably efficient in rescuing parasite control. Notably, NOD-like receptor family pyrin domain containing 6 (NLRP6) was the only NLR required for innate parasite control. Taken together, these data support a model of innate recognition of Cryptosporidium infection through an NLRP6-dependent and enterocyte-intrinsic inflammasome that leads to the release of IL-18 required for parasite control.


Asunto(s)
Criptosporidiosis/inmunología , Enterocitos/metabolismo , Inflamasomas/metabolismo , Interleucina-18/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Caspasa 1/metabolismo , Cryptosporidium/fisiología , Enterocitos/inmunología , Interacciones Huésped-Patógeno , Ratones
7.
Cell Host Microbe ; 26(1): 135-146.e5, 2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31231045

RESUMEN

Cryptosporidium is a leading cause of diarrheal disease and an important contributor to early childhood mortality, malnutrition, and growth faltering. Older children in high endemicity regions appear resistant to infection, while previously unexposed adults remain susceptible. Experimental studies in humans and animals support the development of disease resistance, but we do not understand the mechanisms that underlie protective immunity to Cryptosporidium. Here, we derive an in vivo model of Cryptosporidium infection in immunocompetent C57BL/6 mice by isolating parasites from naturally infected wild mice. Similar to human cryptosporidiosis, this infection causes intestinal pathology, and interferon-γ controls early infection while T cells are critical for clearance. Importantly, mice that controlled a live infection were resistant to secondary challenge and vaccination with attenuated parasites provided protection equal to live infection. Both parasite and host are genetically tractable and this in vivo model will facilitate mechanistic investigation and rational vaccine design.


Asunto(s)
Inmunidad Adaptativa , Criptosporidiosis/inmunología , Diarrea/inmunología , Modelos Animales de Enfermedad , Interacciones Huésped-Patógeno , Inmunidad Innata , Animales , Criptosporidiosis/patología , Cryptosporidium/crecimiento & desarrollo , Cryptosporidium/inmunología , Diarrea/patología , Resistencia a la Enfermedad , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...