Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
ACS Appl Mater Interfaces ; 14(6): 7731-7740, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35128928

RESUMEN

Electrochemical CO2 reduction (ECR) promises the replacement of fossil fuels as the source of feedstock chemicals and seasonal storage of renewable energy. While much progress has been made in catalyst development and electrochemical reactor design, few studies have addressed the effect of catalyst integration on device performance. Using a microfluidic gas diffusion electrolyzer, we systematically studied the effect of thickness and the morphology of electron beam (EB) and magnetron-sputtered (MS) Cu catalyst coatings on ECR performance. We observed that EB-Cu outperforms MS-Cu in current density, selectivity, and energy efficiency, with 400 nm thick catalyst coatings performing the best. The superior performance of EB-Cu catalysts is assigned to their faceted surface morphology and sharper Cu/gas diffusion layer interface, which increases their hydrophobicity. Tests in a large-scale zero-gap electrolyzer yielded similar product selectivity distributions with an ethylene Faradaic efficiency of 39% at 200 mA/cm2, demonstrating the scalability for industrial ECR applications.

3.
J Chem Phys ; 155(11): 114702, 2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34551531

RESUMEN

Cu-based catalysts currently offer the most promising route to actively and selectively produce value-added chemicals via electrochemical reduction of CO2 (eCO2R); yet further improvements are required for their wide-scale deployment in carbon mitigation efforts. Here, we systematically investigate a family of dilute Cu-based alloys to explore their viability as active and selective catalysts for eCO2R through a combined theoretical-experimental approach. Using a quantum-classical modeling approach that accounts for dynamic solvation effects, we assess the stability and activity of model single-atom catalysts under eCO2R conditions. Our calculations identify that the presence of eCO2R intermediates, such as CO*, H*, and OH*, may dynamically influence the local catalyst surface composition. Additionally, we identify through binding energy descriptors of the CO*, CHO*, and OCCO* dimer intermediates that certain elements, such as group 13 elements (B, Al, and Ga), enhance the selectivity of C2+ species relative to pure Cu by facilitating CO dimerization. The theoretical work is corroborated by preliminary testing of eCO2R activity and selectivity of candidate dilute Cu-based alloy catalyst films prepared by electron beam evaporation in a zero-gap gas diffusion electrode-based reactor. Of all studied alloys, dilute CuAl was found to be the most active and selective toward C2+ products like ethylene, consistent with the theoretical predictions. We attribute the improved performance of dilute CuAl alloys to more favorable dimerization reaction energetics of bound CO species relative to that on pure Cu. In a broader context, the results presented here demonstrate the power of our simulation framework in terms of rational catalyst design.

4.
Phys Chem Chem Phys ; 19(24): 15856-15863, 2017 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-28585950

RESUMEN

In the future, industrial CO2 electroreduction using renewable energy sources could be a sustainable means to convert CO2 and water into commodity chemicals at room temperature and atmospheric pressure. This study focuses on the electrocatalytic reduction of CO2 on polycrystalline Au surfaces, which have high activity and selectivity for CO evolution. We explore the catalytic behavior of polycrystalline Au surfaces by coupling potentiostatic CO2 electrolysis experiments in an aqueous bicarbonate solution with high sensitivity product detection methods. We observed the production of methanol, in addition to detecting the known products of CO2 electroreduction on Au: CO, H2 and formate. We suggest a mechanism that explains Au's evolution of methanol. Specifically, the Au surface does not favor C-O scission, and thus is more selective towards methanol than methane. These insights could aid in the design of electrocatalysts that are selective for CO2 electroreduction to oxygenates over hydrocarbons.

5.
Angew Chem Int Ed Engl ; 54(17): 5179-82, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25728325

RESUMEN

Nanostructured surfaces have been shown to greatly enhance the activity and selectivity of many different catalysts. Here we report a nanostructured copper surface that gives high selectivity for ethylene formation from electrocatalytic CO2 reduction. The nanostructured copper is easily formed in situ during the CO2 reduction reaction, and scanning electron microscopy (SEM) shows the surface to be dominated by cubic structures. Using online electrochemical mass spectrometry (OLEMS), the onset potentials and relative selectivity toward the volatile products (ethylene and methane) were measured for several different copper surfaces and single crystals, relating the cubic shape of the copper surface to the greatly enhanced ethylene selectivity. The ability of the cubic nanostructure to so strongly favor multicarbon product formation from CO2 reduction, and in particular ethylene over methane, is unique to this surface and is an important step toward developing a catalyst that has exclusive selectivity for multicarbon products.

6.
J Am Chem Soc ; 136(40): 14107-13, 2014 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-25259478

RESUMEN

Fuels and industrial chemicals that are conventionally derived from fossil resources could potentially be produced in a renewable, sustainable manner by an electrochemical process that operates at room temperature and atmospheric pressure, using only water, CO2, and electricity as inputs. To enable this technology, improved catalysts must be developed. Herein, we report trends in the electrocatalytic conversion of CO2 on a broad group of seven transition metal surfaces: Au, Ag, Zn, Cu, Ni, Pt, and Fe. Contrary to conventional knowledge in the field, all metals studied are capable of producing methane or methanol. We quantify reaction rates for these two products and describe catalyst activity and selectivity in the framework of CO binding energies for the different metals. While selectivity toward methane or methanol is low for most of these metals, the fact that they are all capable of producing these products, even at a low rate, is important new knowledge. This study reveals a richer surface chemistry for transition metals than previously known and provides new insights to guide the development of improved CO2 conversion catalysts.

7.
Phys Chem Chem Phys ; 16(27): 13814-9, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-24915537

RESUMEN

The electrochemical reduction of CO2 could allow for a sustainable process by which renewable energy from wind and solar are used directly in the production of fuels and chemicals. In this work we investigated the potential dependent activity and selectivity of the electrochemical reduction of CO2 on metallic silver surfaces under ambient conditions. Our results deepen our understanding of the surface chemistry and provide insight into the factors important to designing better catalysts for the reaction. The high sensitivity of our experimental methods for identifying and quantifying products of reaction allowed for the observation of six reduction products including CO and hydrogen as major products and formate, methane, methanol, and ethanol as minor products. By quantifying the potential-dependent behavior of all products, we provide insights into kinetics and mechanisms at play, in particular involving the production of hydrocarbons and alcohols on catalysts with weak CO binding energy as well as the formation of a C-C bond required to produce ethanol.

8.
Environ Sci Technol ; 47(23): 13695-701, 2013 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-24256554

RESUMEN

This work explores surface changes and the Hg capture performance of brominated activated carbon (AC) pellets, sulfur-treated AC pellets, and sulfur-treated AC fibers upon exposure to simulated Powder River Basin-fired flue gas. Hg breakthrough curves yielded specific Hg capture amounts by means of the breakthrough shapes and times for the three samples. The brominated AC pellets showed a sharp breakthrough after 170-180 h and a capacity of 585 µg of Hg/g, the sulfur-treated AC pellets exhibited a gradual breakthrough after 80-90 h and a capacity of 661 µg of Hg/g, and the sulfur-treated AC fibers showed no breakthrough even after 1400 h, exhibiting a capacity of >9700 µg of Hg/g. X-ray photoelectron spectroscopy was used to analyze sorbent surfaces before and after testing to show important changes in quantification and oxidation states of surface Br, N, and S after exposure to the simulated flue gas. For the brominated and sulfur-treated AC pellet samples, the amount of surface-bound Br and reduced sulfur groups decreased upon Hg capture testing, while the level of weaker Hg-binding surface S(VI) and N species (perhaps as NH4(+)) increased significantly. A high initial concentration of strong Hg-binding reduced sulfur groups on the surface of the sulfur-treated AC fiber is likely responsible for this sorbent's minimal accumulation of S(VI) species during exposure to the simulated flue gas and is linked to its superior Hg capture performance compared to that of the brominated and sulfur-treated AC pellet samples.


Asunto(s)
Carbono/química , Carbón Orgánico/química , Halogenación , Mercurio/análisis , Espectroscopía de Fotoelectrones , Azufre/química , Adsorción , Fibra de Carbono , Gases/análisis , Oxidación-Reducción , Propiedades de Superficie
9.
Anal Biochem ; 362(1): 89-97, 2007 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-17254538

RESUMEN

The ability to adsorb proteins and enzymes on electrode surfaces enhances opportunities for studying enzyme activity and redox-based catalysis. Proteins may be bound in a chosen orientation on surfaces so that specific sites within them may be preferentially studied, but to date no systematic study of a redox moiety from solvent to electrode surface to the protein milieu has been performed. We report the redox and ionization behavior of tyrosine-cysteine, using the cysteine residue to form covalent linkages with Au and self-assembled-monolayer (SAM)-modified Au surfaces and using the tyrosine for redox activity. In addition, the same redox fragment incorporated into a protein bound to a SAM is examined. We find that directly binding the dipeptide to Au causes the greatest change in properties, while binding it to the SAM causes a slight perturbation in redox potential and a significant perturbation in pK(a). When azurin with a surface-exposed tyrosine is bound to a SAM-modified electrode, the redox potential and pK(a) of the tyrosine are nearly unperturbed from the values found for the dipeptide free in solution. Finally, quantification of the voltammetric signal indicates that tyrosine oxidation in the protein triggers the additional oxidation of another nearby amino acid.


Asunto(s)
Electroquímica/métodos , Radicales Libres/química , Tirosina/química , Cisteína/química , Electroquímica/instrumentación , Electrodos , Oro Coloide/química , Oxidación-Reducción , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...