Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 7(9): e44457, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22984513

RESUMEN

Cleavage of the full-length mutant huntingtin (mhtt) protein into smaller, soluble aggregation-prone mhtt fragments appears to be a key process in the neuropathophysiology of Huntington's Disease (HD). Recent quantification studies using TR-FRET-based immunoassays showed decreasing levels of soluble mhtt correlating with an increased load of aggregated mhtt in the aging HdhQ150 mouse brain. To better characterize the nature of these changes at the level of native mhtt species, we developed a detection method that combines size exclusion chromatography (SEC) and time-resolved fluorescence resonance energy transfer (TR-FRET) that allowed us to resolve and define the formation, aggregation and temporal dynamics of native soluble mhtt species and insoluble aggregates in the brain of the HdhQ150 knock-in mouse. We found that mhtt fragments and not full-length mhtt form oligomers in the brains of one month-old mice long before disease phenotypes and mhtt aggregate histopathology occur. As the HdhQ150 mice age, brain levels of soluble full-length mhtt protein remain similar. In contrast, the soluble oligomeric pool of mhtt fragments slightly increases during the first two months before it declines between 3 and 8 months of age. This decline inversely correlates with the formation of insoluble mhtt aggregates. We also found that the pool-size of soluble mhtt oligomers is similar in age-matched heterozygous and homozygous HdhQ150 mouse brains whereas insoluble aggregate formation is greatly accelerated in the homozygous mutant brain. The capacity of the soluble mhtt oligomer pool therefore seems exhausted already in the heterozygous state and likely kept constant by changes in flux and, as a consequence, increased rate of insoluble aggregate formation. We demonstrate that our novel findings in mice translate to human HD brain but not HD patient fibroblasts.


Asunto(s)
Envejecimiento , Enfermedad de Huntington/genética , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Animales , Encéfalo/metabolismo , Encéfalo/patología , Cromatografía/métodos , Modelos Animales de Enfermedad , Células Madre Embrionarias/citología , Fibroblastos/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Humanos , Proteína Huntingtina , Enfermedad de Huntington/metabolismo , Ratones , Modelos Biológicos , Unión Proteica , Proteínas de Transporte de Serotonina en la Membrana Plasmática/fisiología
2.
Hum Mol Genet ; 20(21): 4209-23, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21828077

RESUMEN

Mutations in leucine-rich repeat kinase 2 (LRRK2) cause late-onset Parkinson's disease (PD), but the underlying pathophysiological mechanisms and the normal function of this large multidomain protein remain speculative. To address the role of this protein in vivo, we generated three different LRRK2 mutant mouse lines. Mice completely lacking the LRRK2 protein (knock-out, KO) showed an early-onset (age 6 weeks) marked increase in number and size of secondary lysosomes in kidney proximal tubule cells and lamellar bodies in lung type II cells. Mice expressing a LRRK2 kinase-dead (KD) mutant from the endogenous locus displayed similar early-onset pathophysiological changes in kidney but not lung. KD mutants had dramatically reduced full-length LRRK2 protein levels in the kidney and this genetic effect was mimicked pharmacologically in wild-type mice treated with a LRRK2-selective kinase inhibitor. Knock-in (KI) mice expressing the G2019S PD-associated mutation that increases LRRK2 kinase activity showed none of the LRRK2 protein level and histopathological changes observed in KD and KO mice. The autophagy marker LC3 remained unchanged but kidney mTOR and TCS2 protein levels decreased in KD and increased in KO and KI mice. Unexpectedly, KO and KI mice suffered from diastolic hypertension opposed to normal blood pressure in KD mice. Our findings demonstrate a role for LRRK2 in kidney and lung physiology and further show that LRRK2 kinase function affects LRRK2 protein steady-state levels thereby altering putative scaffold/GTPase activity. These novel aspects of peripheral LRRK2 biology critically impact ongoing attempts to develop LRRK2 selective kinase inhibitors as therapeutics for PD.


Asunto(s)
Homeostasis , Riñón/enzimología , Pulmón/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Células Epiteliales Alveolares/ultraestructura , Animales , Presión Sanguínea/efectos de los fármacos , Dopamina/metabolismo , Agonistas de Dopamina/farmacología , Antagonistas de Dopamina/farmacología , Estabilidad de Enzimas/efectos de los fármacos , Homeostasis/efectos de los fármacos , Riñón/patología , Riñón/fisiopatología , Riñón/ultraestructura , Túbulos Renales Proximales/enzimología , Túbulos Renales Proximales/patología , Túbulos Renales Proximales/fisiopatología , Túbulos Renales Proximales/ultraestructura , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Pulmón/efectos de los fármacos , Pulmón/patología , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Lisosomas/ultraestructura , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Ratones Mutantes , Actividad Motora , Transducción de Señal/efectos de los fármacos
3.
Pharmacol Ther ; 117(1): 77-93, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17961662

RESUMEN

Multiple sclerosis (MS) is an autoimmune, neurological disability with unknown etiology. The current therapies available for MS work by an immunomodulatory action, preventing T-cell- and macrophage-mediated destruction of brain-resident oligodendrocytes and axonal loss. Recently, FTY720 (fingolimod) was shown to significantly reduce relapse rates in MS patients and is currently in Phase III clinical trials. This drug attenuates trafficking of harmful T cells entering the brain by regulating sphingosine-1-phosphate (S1P) receptors. Here, we outline the direct roles that S1P receptors play in the central nervous system (CNS) and discuss additional modalities by which FTY720 may provide direct neuroprotection in MS.


Asunto(s)
Inmunosupresores/farmacología , Glicoles de Propileno/farmacología , Receptores de Lisoesfingolípidos/metabolismo , Esfingosina/análogos & derivados , Animales , Encéfalo/metabolismo , Encéfalo/fisiopatología , Sistemas de Liberación de Medicamentos , Clorhidrato de Fingolimod , Humanos , Inmunosupresores/uso terapéutico , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/fisiopatología , Glicoles de Propileno/uso terapéutico , Receptores de Lisoesfingolípidos/efectos de los fármacos , Esfingosina/farmacología , Esfingosina/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...