Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 263
Filtrar
1.
Nat Commun ; 15(1): 1945, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38431663

RESUMEN

Early development of the gut ecosystem is crucial for lifelong health. While infant gut bacterial communities have been studied extensively, the infant gut virome remains under-explored. To study the development of the infant gut virome over time and the factors that shape it, we longitudinally assess the composition of gut viruses and their bacterial hosts in 30 women during and after pregnancy and in their 32 infants during their first year of life. Using shotgun metagenomic sequencing applied to dsDNA extracted from Virus-Like Particles (VLPs) and bacteria, we generate 205 VLP metaviromes and 322 total metagenomes. With this data, we show that while the maternal gut virome composition remains stable during late pregnancy and after birth, the infant gut virome is dynamic in the first year of life. Notably, infant gut viromes contain a higher abundance of active temperate phages compared to maternal gut viromes, which decreases over the first year of life. Moreover, we show that the feeding mode and place of delivery influence the gut virome composition of infants. Lastly, we provide evidence of co-transmission of viral and bacterial strains from mothers to infants, demonstrating that infants acquire some of their virome from their mother's gut.


Asunto(s)
Bacteriófagos , Microbioma Gastrointestinal , Microbiota , Virus , Lactante , Humanos , Femenino , Embarazo , Madres , Bacteriófagos/genética , Bacterias/genética
2.
Heliyon ; 10(3): e24539, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38317966

RESUMEN

Oligosaccharides and sialic acids (Sia) are bioactive components in milk that contribute to newborn development and health. Hyperglycemia in pregnancy (HIP) can have adverse effects on both mother and infant. HIP is associated with low-grade systemic inflammation. Inflammation influenced glycan composition, particularly of Sia-containing structures. We hypothesize that HIP and high-fat diet influence milk oligosaccharide composition, particularly sialylated oligosaccharides. Furthermore, we propose that milk Sia content influences pup brain Sia content. To test these hypotheses we (i) characterize mouse milk oligosaccharides and Sia concentrations in mouse milk of a GDM mouse model with dietary fat intake intervention; and (ii) determine Sia levels in offspring brains. The concentrations of oligosaccharides and Sia in mouse milk and offspring's brains were quantified using UPLC-FLD analysis. Analyses were performed on surplus samples from a previous study, where HIP was induced by combining high-fat diet (HF) feeding and low-dose streptozotocin injections in C57Bl/6NTac female mice. The previous study described the metabolic effects of HIP on dams and offspring. We detected 21 mouse milk oligosaccharides, including 9 neutral and 12 acidic structures using UPLC-MS. A total of 8 structures could be quantified using UPLC-FLD. Maternal HIP and HF diet during lactation influenced sialylated oligosaccharide concentrations in mouse milk and total and free sialic acid concentrations. Sia content in offspring brain was associated with total and free Neu5Gc in mouse milk of dams, but no correlations with HIP or maternal diet were observed.

3.
PLoS One ; 19(1): e0290493, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38181033

RESUMEN

Currently, over 88 million people are estimated to have adopted a vegan or vegetarian diet. Cysteine is a semi-essential amino acid, which availability is largely dependent on dietary intake of meat, eggs and whole grains. Vegan/vegetarian diets are therefore inherently low in cysteine. Sufficient uptake of cysteine is crucial, as it serves as substrate for protein synthesis and can be converted to taurine and glutathione. We found earlier that intermolecular cystine bridges are essential for the barrier function of the intestinal mucus layer. Therefore, we now investigate the effect of low dietary cystine on the intestine. Mice (8/group) received a high fat diet with a normal or low cystine concentration for 2 weeks. We observed no changes in plasma methionine, cysteine, taurine or glutathione levels or bile acid conjugation after 2 weeks of low cystine feeding. In the colon, dietary cystine restriction results in an increase in goblet cell numbers, and a borderline significant increase mucus layer thickness. Gut microbiome composition and expression of stem cell markers did not change on the low cystine diet. Remarkably, stem cell markers, as well as the proliferation marker Ki67, were increased upon cystine restriction in the small intestine. In line with this, gene set enrichment analysis indicated enrichment of Wnt signaling in the small intestine of mice on the low cystine diet, indicative of increased epithelial proliferation. In conclusion, 2 weeks of cystine restriction did not result in apparent systemic effects, but the low cystine diet increased the proliferative capacity specifically of the small intestine and induced the number of goblet cells in the colon.


Asunto(s)
Cisteína , Cistina , Humanos , Animales , Ratones , Intestino Delgado , Glutatión , Taurina
4.
Artículo en Inglés | MEDLINE | ID: mdl-38086439

RESUMEN

The Wiskott-Aldrich syndrome protein and SCAR homolog (WASH) complex is a pentameric protein complex localized at endosomes, where it facilitates the transport of numerous receptors from endosomes toward the plasma membrane. Recent studies have shown that the WASH complex plays an essential role in cholesterol and glucose homeostasis in humans and mice. To investigate the physiological importance of intestinal WASH, we ablated the WASH component WASHC1 specifically in murine enterocytes. Male and female intestine-specific WASHC1-deficient mice (Washc1IKO) were challenged with either a standard chow diet or a high-cholesterol (1.25 %) diet (HCD). Washc1IKO mice fed a standard diet did not present any apparent phenotype, but when fed an HCD, their hepatic cholesterol levels were ~ 50 % lower compared to those observed in control mice. The intestinal cholesterol absorption was almost 2-fold decreased in Washc1IKO mice, which translated into increased fecal neutral sterol loss. The intestinal expression of cholesterogenic genes, such as Hmgcs1, Hmgcr, and Ldlr, was significantly higher in Washc1IKO mice than in control mice and correlated with increased whole-body de novo cholesterol synthesis, likely to compensate for impaired intestinal cholesterol absorption. Unexpectedly, the ratio of biliary 12α-/non-12α-hydroxylated bile acids (BAs) was decreased in Washc1IKO mice and reversing this reduced ratio by feeding the mice with the HCD supplemented with 0.5 % (w/w) sodium cholate normalized the improvement of hepatic cholesterol levels in Washc1IKO mice. Our data indicate that the intestinal WASH complex plays an important role in intestinal cholesterol absorption, likely by modulating biliary BA composition.


Asunto(s)
Ácidos y Sales Biliares , Intestinos , Animales , Femenino , Humanos , Masculino , Ratones , Ácidos y Sales Biliares/metabolismo , Transporte Biológico , Colesterol/metabolismo , Hígado/metabolismo
5.
Clin Sci (Lond) ; 137(21): 1637-1650, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37910096

RESUMEN

Cyp2c70-deficient mice have a human-like bile acid (BA) composition due to their inability to convert chenodeoxycholic acid (CDCA) into rodent-specific muricholic acids (MCAs). However, the hydrophobic BA composition in these animals is associated with liver pathology. Although Cyp2c70-ablation has been shown to alter gut microbiome composition, the impact of gut bacteria on liver pathology in Cyp2c70-/- mice remains to be established. Therefore, we treated young-adult male and female wild-type (WT) and Cyp2c70-/- mice with antibiotics (AB) with broad specificity to deplete the gut microbiota and assessed the consequences on BA metabolism and liver pathology. Female Cyp2c70-/- mice did not tolerate AB treatment, necessitating premature termination of the experiment. Male Cyp2c70-/- mice did tolerate AB but showed markedly augmented liver pathology after 6 weeks of treatment. Dramatic downregulation of hepatic Cyp8b1 expression (-99%) caused a reduction in the proportions of 12α-hydroxylated BAs in the circulating BA pools of AB-treated male Cyp2c70-/- mice. Interestingly, the resulting increased BA hydrophobicity strongly correlated with various indicators of liver pathology. Moreover, genetic inactivation of Cyp8b1 in livers of male Cyp2c70-/- mice increased liver pathology, while addition of ursodeoxycholic acid to the diet prevented weight loss and liver pathology in AB-treated female Cyp2c70-/- mice. In conclusion, depletion of gut microbiota in Cyp2c70-/- mice aggravates liver pathology at least in part by increasing the hydrophobicity of the circulating BA pool. These findings highlight that the potential implications of AB administration to cholestatic patients should be evaluated in a systematic manner.


Asunto(s)
Colestasis , Microbioma Gastrointestinal , Humanos , Masculino , Animales , Femenino , Ratones , Ácidos y Sales Biliares/metabolismo , Esteroide 12-alfa-Hidroxilasa/genética , Esteroide 12-alfa-Hidroxilasa/metabolismo , Hígado/metabolismo , Antibacterianos , Ratones Endogámicos C57BL
6.
Nat Commun ; 14(1): 7880, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38036513

RESUMEN

Normothermic machine perfusion (NMP) after static cold storage is increasingly used for preservation and assessment of human donor livers prior to transplantation. Biliary viability assessment during NMP reduces the risk of post-transplant biliary complications. However, understanding of molecular changes in the biliary system during NMP remains incomplete. We performed an in-depth, unbiased proteomics analysis of bile collected during sequential hypothermic machine perfusion, rewarming and NMP of 55 human donor livers. Longitudinal analysis during NMP reveals proteins reflective of cellular damage at early stages, followed by upregulation of secretory and immune response processes. Livers with bile chemistry acceptable for transplantation reveal protein patterns implicated in regenerative processes, including cellular proliferation, compared to livers with inadequate bile chemistry. These findings are reinforced by detection of regenerative gene transcripts in liver tissue before machine perfusion. Our comprehensive bile proteomics and liver transcriptomics data sets provide the potential to further evaluate molecular mechanisms during NMP and refine viability assessment criteria.


Asunto(s)
Sistema Biliar , Trasplante de Hígado , Humanos , Bilis/metabolismo , Proteoma/metabolismo , Donadores Vivos , Hígado , Perfusión
7.
Food Res Int ; 174(Pt 1): 113589, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37986455

RESUMEN

Human milk is considered the optimal food for infants with abundant nutrients and bioactive components, which play key roles in infant health and development. Infant formulas represent appropriate substitutes for human milk. There are many brands of infant formula with different ingredient sources and functions on the market. The present study aims to quantify important bioactive components, i.e., milk oligosaccharides (MOS), sialic acids (Sia) and corticosteroids, in different infant formulas and compare these to human milk. In total, 12 different infant formulas available on the Dutch market were analyzed in this study. The concentrations of MOS and Sia were characterized by UHPLC-FLD and LC-MS, while corticosteroids were determined using established UHPLC-MS/MS methods. Among infant formulas, 15 structures of oligosaccharides were identified, of which 2'-Fucosyllactose (2'FL), 3'-Galactosyllactose (3'GL) and 6'-Galactosyllactose (6́'GL) were found in all infant formulas. The oligosaccharide concentrations differed between milk source and brands and were 3-5 times lower than in human milk. All infant formulas contained Sia, N-acetylneuraminic acid (Neu5Ac) was dominant in bovine milk-based formulas, while N-glycolylneuraminic acid (Neu5Gc) was major in goat milk-based formula. All infant formulas contained corticosteroids, yet, at lower concentrations than human milk. Insight in concentrations of bioactive components in infant formula compared to human milk may give direction to dietary advices and/or novel formula design.


Asunto(s)
Fórmulas Infantiles , Ácidos Siálicos , Lactante , Humanos , Fórmulas Infantiles/química , Ácidos Siálicos/análisis , Espectrometría de Masas en Tándem , Leche Humana/química , Oligosacáridos/análisis , Corticoesteroides/análisis
8.
Biomedicines ; 11(9)2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37760936

RESUMEN

Bile acids (BAs) and their signaling pathways have been identified as therapeutic targets for liver and metabolic diseases. We generated Cyp2c70-/- (KO) mice that were not able to convert chenodeoxycholic acid into rodent-specific muricholic acids (MCAs) and, hence, possessed a more hydrophobic, human-like BA pool. Recently, we have shown that KO mice display cholangiopathic features with the development of liver fibrosis. The aim of this study was to determine whether BA sequestration modulates liver pathology in Western type-diet (WTD)-fed KO mice. The BA sequestrant colesevelam was mixed into the WTD (2% w/w) of male Cyp2c70+/+ (WT) and KO mice and the effects were evaluated after 3 weeks of treatment. Colesevelam increased fecal BA excretion in WT and KO mice and reduced the hydrophobicity of biliary BAs in KO mice. Colesevelam ameliorated diet-induced hepatic steatosis in WT mice, whereas KO mice were resistant to diet-induced steatosis and BA sequestration had no additional effects on liver fat content. Total cholesterol concentrations in livers of colesevelam-treated WT and KO mice were significantly lower than those of untreated controls. Of particular note, colesevelam treatment normalized plasma levels of liver damage markers in KO mice and markedly decreased hepatic mRNA levels of fibrogenesis-related genes in KO mice. Lastly, colesevelam did not affect glucose excursions and insulin sensitivity in WT or KO mice. Our data show that BA sequestration ameliorates liver pathology in Cyp2c70-/- mice with a human-like bile acid composition without affecting insulin sensitivity.

9.
Nat Commun ; 14(1): 5181, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37626055

RESUMEN

The sterol regulatory element binding proteins (SREBPs) are transcription factors that govern cholesterol and fatty acid metabolism. We recently identified SPRING as a post-transcriptional regulator of SREBP activation. Constitutive or inducible global ablation of Spring in mice is not tolerated, and we therefore develop liver-specific Spring knockout mice (LKO). Transcriptomics and proteomics analysis reveal attenuated SREBP signaling in livers and hepatocytes of LKO mice. Total plasma cholesterol is reduced in male and female LKO mice in both the low-density lipoprotein and high-density lipoprotein fractions, while triglycerides are unaffected. Loss of Spring decreases hepatic cholesterol and triglyceride content due to diminished biosynthesis, which coincides with reduced very-low-density lipoprotein secretion. Accordingly, LKO mice are protected from fructose diet-induced hepatosteatosis. In humans, we find common genetic SPRING variants that associate with circulating high-density lipoprotein cholesterol and ApoA1 levels. This study positions SPRING as a core component of hepatic SREBP signaling and systemic lipid metabolism in mice and humans.


Asunto(s)
Metabolismo de los Lípidos , Hígado , Humanos , Femenino , Masculino , Animales , Ratones , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Metabolismo de los Lípidos/genética , Hepatocitos , Lipoproteínas HDL
10.
Nutrients ; 15(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37447330

RESUMEN

The nuclear liver X receptors (LXRα/ß) and peroxisome proliferator-activated receptors (PPARα/γ) are involved in the regulation of multiple biological processes, including lipid metabolism and inflammation. The activation of these receptors has been found to have neuroprotective effects, making them interesting therapeutic targets for neurodegenerative disorders such as Alzheimer's Disease (AD). The Asian brown seaweed Sargassum fusiforme contains both LXR-activating (oxy)phytosterols and PPAR-activating fatty acids. We have previously shown that dietary supplementation with lipid extracts of Sargassum fusiforme prevents disease progression in a mouse model of AD, without inducing adverse effects associated with synthetic pan-LXR agonists. We now determined the LXRα/ß- and PPARα/γ-activating capacity of lipid extracts of six European brown seaweed species (Alaria esculenta, Ascophyllum nodosum, Fucus vesiculosus, Himanthalia elongata, Saccharina latissima, and Sargassum muticum) and the Asian seaweed Sargassum fusiforme using a dual luciferase reporter assay. We analyzed the sterol and fatty acid profiles of the extracts by GC-MS and UPLC MS/MS, respectively, and determined their effects on the expression of LXR and PPAR target genes in several cell lines using quantitative PCR. All extracts were found to activate LXRs, with the Himanthalia elongata extract showing the most pronounced efficacy, comparable to Sargassum fusiforme, for LXR activation and transcriptional regulation of LXR-target genes. Extracts of Alaria esculenta, Fucus vesiculosus, and Saccharina latissima showed the highest capacity to activate PPARα, while extracts of Alaria esculenta, Ascophyllum nodosum, Fucus vesiculosus, and Sargassum muticum showed the highest capacity to activate PPARγ, comparable to Sargassum fusiforme extract. In CCF-STTG1 astrocytoma cells, all extracts induced expression of cholesterol efflux genes (ABCG1, ABCA1, and APOE) and suppressed expression of cholesterol and fatty acid synthesis genes (DHCR7, DHCR24, HMGCR and SREBF2, and SREBF1, ACACA, SCD1 and FASN, respectively). Our data show that lipophilic fractions of European brown seaweeds activate LXRs and PPARs and thereby modulate lipid metabolism. These results support the potential of brown seaweeds in the prevention and/or treatment of neurodegenerative diseases and possibly cardiometabolic and inflammatory diseases via concurrent activation of LXRs and PPARs.


Asunto(s)
Enfermedad de Alzheimer , Algas Marinas , Ratones , Animales , Receptores X del Hígado/genética , Receptores X del Hígado/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , PPAR alfa/genética , Espectrometría de Masas en Tándem , Receptores Citoplasmáticos y Nucleares/genética , Colesterol/metabolismo , Ácidos Grasos/metabolismo
11.
Clin Sci (Lond) ; 137(13): 995-1011, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37384590

RESUMEN

Mice with deletion of Cyp2c70 have a human-like bile acid composition, display age- and sex-dependent signs of hepatobiliary disease and can be used as a model to study interactions between bile acids and the gut microbiota in cholestatic liver disease. In the present study, we rederived Cyp2c70-/- mice as germ-free (GF) and colonized them with a human or a mouse microbiota to investigate whether the presence of a microbiota can be protective in cholangiopathic liver disease associated with Cyp2c70-deficiency. GF Cyp2c70-/- mice showed reduced neonatal survival, liver fibrosis, and distinct cholangiocyte proliferation. Colonization of germ-free breeding pairs with a human or a mouse microbiota normalized neonatal survival of the offspring, and particularly colonization with mouse microbiota from a conventionally raised mouse improved the liver phenotype at 6-10 weeks of age. The improved liver phenotype in conventionalized (CD) Cyp2c70-/- mice was associated with increased levels of tauro-ursodeoxycholic acid (TUDCA) and UDCA, resulting in a more hydrophilic bile acid profile compared with GF and humanized Cyp2c70-/- mice. The hydrophobicity index of biliary bile acids of CD Cyp2c70-/- mice was associated with changes in gut microbiota, liver weight, liver transaminases, and liver fibrosis. Hence, our results indicate that neonatal survival of Cyp2c70-/- mice seems to depend on the establishment of a gut microbiota at birth, and the improved liver phenotype in CD Cyp2c70-/- mice may be mediated by a larger proportion of TUDCA/UDCA in the circulating bile acid pool and/or by the presence of specific bacteria.


Asunto(s)
Ácidos y Sales Biliares , Microbioma Gastrointestinal , Hepatopatías , Animales , Femenino , Masculino , Ratones , Animales Recién Nacidos , Ácidos y Sales Biliares/metabolismo , Hepatopatías/metabolismo , Hepatopatías/mortalidad , Análisis de Supervivencia , Ratones Noqueados
12.
EMBO Mol Med ; 15(8): e16845, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37357756

RESUMEN

Liver X receptor (LXR) agonism has theoretical potential for treating NAFLD/NASH, but synthetic agonists induce hyperlipidemia in preclinical models. Desmosterol, which is converted by Δ24-dehydrocholesterol reductase (DHCR24) into cholesterol, is a potent endogenous LXR agonist with anti-inflammatory properties. We aimed to investigate the effects of DHCR24 inhibition on NAFLD/NASH development. Here, by using APOE*3-Leiden. CETP mice, a well-established translational model that develops diet-induced human-like NAFLD/NASH characteristics, we report that SH42, a published DHCR24 inhibitor, markedly increases desmosterol levels in liver and plasma, reduces hepatic lipid content and the steatosis score, and decreases plasma fatty acid and cholesteryl ester concentrations. Flow cytometry showed that SH42 decreases liver inflammation by preventing Kupffer cell activation and monocyte infiltration. LXRα deficiency completely abolishes these beneficial effects of SH42. Together, the inhibition of DHCR24 by SH42 prevents diet-induced hepatic steatosis and inflammation in a strictly LXRα-dependent manner without causing hyperlipidemia. Finally, we also showed that SH42 treatment decreased liver collagen content and plasma alanine transaminase levels in an established NAFLD model. In conclusion, we anticipate that pharmacological DHCR24 inhibition may represent a novel therapeutic strategy for treatment of NAFLD/NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Ratones , Humanos , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Desmosterol/farmacología , Hígado , Inflamación/tratamiento farmacológico , Oxidorreductasas , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/farmacología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/uso terapéutico
14.
Nutrients ; 15(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37111068

RESUMEN

Despite advances in preventive measures and treatment options, cardiovascular disease (CVD) remains the number one cause of death globally. Recent research has challenged the traditional risk factor profile and highlights the potential contribution of non-traditional factors in CVD, such as the gut microbiota and its metabolites. Disturbances in the gut microbiota have been repeatedly associated with CVD, including atherosclerosis and hypertension. Mechanistic studies support a causal role of microbiota-derived metabolites in disease development, such as short-chain fatty acids, trimethylamine-N-oxide, and bile acids, with the latter being elaborately discussed in this review. Bile acids represent a class of cholesterol derivatives that is essential for intestinal absorption of lipids and fat-soluble vitamins, plays an important role in cholesterol turnover and, as more recently discovered, acts as a group of signaling molecules that exerts hormonal functions throughout the body. Studies have shown mediating roles of bile acids in the control of lipid metabolism, immunity, and heart function. Consequently, a picture has emerged of bile acids acting as integrators and modulators of cardiometabolic pathways, highlighting their potential as therapeutic targets in CVD. In this review, we provide an overview of alterations in the gut microbiota and bile acid metabolism found in CVD patients, describe the molecular mechanisms through which bile acids may modulate CVD risk, and discuss potential bile-acid-based treatment strategies in relation to CVD.


Asunto(s)
Enfermedades Cardiovasculares , Microbioma Gastrointestinal , Hipertensión , Humanos , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/metabolismo , Ácidos y Sales Biliares , Hipertensión/complicaciones , Colesterol
15.
Mol Metab ; 69: 101686, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36746333

RESUMEN

OBJECTIVE: Obesity is associated with metabolic dysfunction of white adipose tissue (WAT). Activated adipocytes secrete pro-inflammatory cytokines resulting in the recruitment of pro-inflammatory macrophages, which contribute to WAT insulin resistance. The bile acid (BA)-activated nuclear Farnesoid X Receptor (FXR) controls systemic glucose and lipid metabolism. Here, we studied the role of FXR in adipose tissue function. METHODS: We first investigated the immune phenotype of epididymal WAT (eWAT) from high fat diet (HFD)-fed whole-body FXR-deficient (FXR-/-) mice by flow cytometry and gene expression analysis. We then generated adipocyte-specific FXR-deficient (Ad-FXR-/-) mice and analyzed systemic and eWAT metabolism and immune phenotype upon HFD feeding. Transcriptomic analysis was done on mature eWAT adipocytes from HFD-fed Ad-FXR-/- mice. RESULTS: eWAT from HFD-fed whole-body FXR-/- and Ad-FXR-/- mice displayed decreased pro-inflammatory macrophage infiltration and inflammation. Ad-FXR-/- mice showed lower blood glucose concentrations, improved systemic glucose tolerance and WAT insulin sensitivity and oxidative stress. Transcriptomic analysis identified Gsta4, a modulator of oxidative stress in WAT, as the most upregulated gene in Ad-FXR-/- mouse adipocytes. Finally, chromatin immunoprecipitation analysis showed that FXR binds the Gsta4 gene promoter. CONCLUSIONS: These results indicate a role for the adipocyte FXR-GSTA4 axis in controlling HFD-induced inflammation and systemic glucose homeostasis.


Asunto(s)
Resistencia a la Insulina , Animales , Ratones , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Glucosa/metabolismo , Homeostasis , Inflamación/metabolismo , Resistencia a la Insulina/fisiología , Estrés Oxidativo , Receptores Citoplasmáticos y Nucleares/metabolismo
16.
Int J Mol Sci ; 24(4)2023 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36835544

RESUMEN

Bile acids facilitate the intestinal absorption of dietary lipids and act as signalling molecules in the maintenance of metabolic homeostasis. Farnesoid X receptor (FXR) is a bile acid-responsive nuclear receptor involved in bile acid metabolism, as well as lipid and glucose homeostasis. Several studies have suggested a role of FXR in the control of genes regulating intestinal glucose handling. We applied a novel dual-label glucose kinetic approach in intestine-specific FXR-/- mice (iFXR-KO) to directly assess the role of intestinal FXR in glucose absorption. Although iFXR-KO mice showed decreased duodenal expression of hexokinase 1 (Hk1) under obesogenic conditions, the assessment of glucose fluxes in these mice did not show a role for intestinal FXR in glucose absorption. FXR activation with the specific agonist GS3972 induced Hk1, yet the glucose absorption rate remained unaffected. FXR activation increased the duodenal villus length in mice treated with GS3972, while stem cell proliferation remained unaffected. Accordingly, iFXR-KO mice on either chow, short or long-term HFD feeding displayed a shorter villus length in the duodenum compared to wild-type mice. These findings indicate that delayed glucose absorption reported in whole-body FXR-/- mice is not due to the absence of intestinal FXR. Yet, intestinal FXR does have a role in the small intestinal surface area.


Asunto(s)
Glucosa , Intestinos , Animales , Ratones , Ácidos y Sales Biliares/metabolismo , Glucosa/metabolismo , Mucosa Intestinal/metabolismo , Ratones Endogámicos C57BL , Transducción de Señal
17.
Int J Mol Sci ; 24(2)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36674804

RESUMEN

The nuclear receptors-liver X receptors (LXR α and ß) are potential therapeutic targets in cardiovascular and neurodegenerative diseases because of their key role in the regulation of lipid homeostasis and inflammatory processes. Specific oxy(phyto)sterols differentially modulate the transcriptional activity of LXRs providing opportunities to develop compounds with improved therapeutic characteristics. We isolated oxyphytosterols from Sargassum fusiforme and synthesized sidechain oxidized sterol derivatives. Five 24-oxidized sterols demonstrated a high potency for LXRα/ß activation in luciferase reporter assays and induction of LXR-target genes APOE, ABCA1 and ABCG1 involved in cellular cholesterol turnover in cultured cells: methyl 3ß-hydroxychol-5-en-24-oate (S1), methyl (3ß)-3-aldehydeoxychol-5-en-24-oate (S2), 24-ketocholesterol (S6), (3ß,22E)-3-hydroxycholesta-5,22-dien-24-one (N10) and fucosterol-24,28 epoxide (N12). These compounds induced SREBF1 but not SREBP1c-mediated lipogenic genes such as SCD1, ACACA and FASN in HepG2 cells or astrocytoma cells. Moreover, S2 and S6 enhanced cholesterol efflux from HepG2 cells. All five oxysterols induced production of the endogenous LXR agonists 24(S)-hydroxycholesterol by upregulating the CYP46A1, encoding the enzyme converting cholesterol into 24(S)-hydroxycholesterol; S1 and S6 may also act via the upregulation of desmosterol production. Thus, we identified five novel LXR-activating 24-oxidized sterols with a potential for therapeutic applications in neurodegenerative and cardiovascular diseases.


Asunto(s)
Enfermedades Neurodegenerativas , Fitosteroles , Humanos , Receptores X del Hígado , Esteroles/farmacología , Receptores Nucleares Huérfanos/genética , Hidroxicolesteroles , Enfermedades Neurodegenerativas/tratamiento farmacológico , Colesterol
18.
Pediatr Res ; 93(6): 1582-1590, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36151295

RESUMEN

BACKGROUND: Cyp2c70-/- mice with a human-like bile acid (BA) composition display features of neonatal cholestasis. We assessed whether perinatal ursodeoxycholic acid (UDCA) exposure prevents neonatal cholestasis in Cyp2c70-/- mice and reduces cholangiopathy development later in life. METHODS: Cyp2c70+/- males were crossed with Cyp2c70+/- females fed either a regular chow diet or a 0.1% UDCA-containing diet during breeding, gestation, and suckling. Cholestasis and liver function parameters were assessed in their Cyp2c70-/- and wild-type offspring at 3 and 8 weeks of age. RESULTS: Three-week-old Cyp2c70-/- pups showed features of neonatal cholestasis, including elevated plasma BAs and transaminases, which were completely prevented in Cyp2c70-/- pups upon perinatal UDCA exposure. In addition, UDCA administration to the dams corrected altered hepatic gene expression patterns in Cyp2c70-/- pups, reduced markers of fibrogenesis and inflammation, and prevented cholangiocyte proliferation. Yet, these beneficial effects of perinatal UDCA exposure were not retained into adulthood upon discontinuation of treatment. CONCLUSION: Perinatal exposure of Cyp2c70-/- mice to UDCA has beneficial effects on liver function parameters, supporting a direct role of BA hydrophobicity in the development of neonatal cholestasis in these mice. However, prevention of neonatal cholestasis in Cyp2c70-/- mice has no long-lasting effects on liver pathophysiology. IMPACT: This is the first study showing that perinatal UDCA exposure prevents features of neonatal cholestasis that are observed in mice with a human-like bile acid composition, i.e., Cyp2c70-/- mice. Perinatal UDCA exposure of Cyp2c70-/- pups leads to UDCA enrichment in their circulating bile acid pool and, consequently, to a reduced hydrophobicity of biliary bile acids. Perinatal UDCA exposure of Cyp2c70-/- pups has no long-lasting effects on the development of cholangiopathy after discontinuation of treatment. The results in this study expand current knowledge regarding acute and long-lasting effects of UDCA treatment in early life.


Asunto(s)
Colestasis , Hepatopatías , Masculino , Embarazo , Femenino , Humanos , Ratones , Animales , Recién Nacido , Ácido Ursodesoxicólico/farmacología , Ácido Ursodesoxicólico/metabolismo , Ácidos y Sales Biliares , Colestasis/genética
19.
BMC Med ; 20(1): 485, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36522747

RESUMEN

BACKGROUND: Branched-chain amino acids (BCAAs; valine, leucine, and isoleucine) are essential amino acids that are associated with an increased risk of cardiometabolic diseases (CMD). However, there are still only limited insights into potential direct associations between BCAAs and a wide range of CMD parameters, especially those remaining after correcting for covariates and underlying causal relationships. METHODS: To shed light on these relationships, we systematically characterized the associations between plasma BCAA concentrations and a large panel of 537 CMD parameters (including atherosclerosis-related parameters, fat distribution, plasma cytokine concentrations and cell counts, circulating concentrations of cardiovascular-related proteins and plasma metabolites) in 1400 individuals from the Dutch population cohort LifeLines DEEP and 294 overweight individuals from the 300OB cohort. After correcting for age, sex, and BMI, we assessed associations between individual BCAAs and CMD parameters. We further assessed the underlying causality using Mendelian randomization. RESULTS: A total of 838 significant associations were detected for 409 CMD parameters. BCAAs showed both common and specific associations, with the most specific associations being detected for isoleucine. Further, we found that obesity status substantially affected the strength and direction of associations for valine, which cannot be corrected for using BMI as a covariate. Subsequent univariable Mendelian randomization (UVMR), after removing BMI-associated SNPs, identified seven significant causal relationships from four CMD traits to BCAA levels, mostly for diabetes-related parameters. However, no causal effects of BCAAs on CMD parameters were supported. CONCLUSIONS: Our cross-sectional association study reports a large number of associations between BCAAs and CMD parameters. Our results highlight some specific associations for isoleucine, as well as obesity-specific effects for valine. MR-based causality analysis suggests that altered BCAA levels can be a consequence of diabetes and alteration in lipid metabolism. We found no MR evidence to support a causal role for BCAAs in CMD. These findings provide evidence to (re)evaluate the clinical importance of individual BCAAs in CMD diagnosis, prevention, and treatment.


Asunto(s)
Aterosclerosis , Diabetes Mellitus , Humanos , Isoleucina , Análisis de la Aleatorización Mendeliana , Estudios Transversales , Aminoácidos de Cadena Ramificada/metabolismo , Obesidad/epidemiología , Obesidad/genética , Valina/genética
20.
Nat Med ; 28(11): 2333-2343, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36216932

RESUMEN

The levels of the thousands of metabolites in the human plasma metabolome are strongly influenced by an individual's genetics and the composition of their diet and gut microbiome. Here, by assessing 1,183 plasma metabolites in 1,368 extensively phenotyped individuals from the Lifelines DEEP and Genome of the Netherlands cohorts, we quantified the proportion of inter-individual variation in the plasma metabolome explained by different factors, characterizing 610, 85 and 38 metabolites as dominantly associated with diet, the gut microbiome and genetics, respectively. Moreover, a diet quality score derived from metabolite levels was significantly associated with diet quality, as assessed by a detailed food frequency questionnaire. Through Mendelian randomization and mediation analyses, we revealed putative causal relationships between diet, the gut microbiome and metabolites. For example, Mendelian randomization analyses support a potential causal effect of Eubacterium rectale in decreasing plasma levels of hydrogen sulfite-a toxin that affects cardiovascular function. Lastly, based on analysis of the plasma metabolome of 311 individuals at two time points separated by 4 years, we observed a positive correlation between the stability of metabolite levels and the amount of variance in the levels of that metabolite that could be explained in our analysis. Altogether, characterization of factors that explain inter-individual variation in the plasma metabolome can help design approaches for modulating diet or the gut microbiome to shape a healthy metabolome.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Metaboloma/genética , Dieta , Microbioma Gastrointestinal/genética , Microbiota/genética , Fenotipo , Heces/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA