Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Metab ; 35(6): 909-911, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37285806

RESUMEN

Choline is an essential nutrient, but how cells acquire it was not known. Two studies by Kenny et al. and Tsuchiya et al. identified the plasma membrane proteins FLVCR1 and FLVCR2 to be the bona fide choline transporters mediating choline uptake for de novo synthesis of phospholipids in all cells.


Asunto(s)
Fosfolípidos , Fosfolípidos/economía , Humanos , Animales
2.
Proc Natl Acad Sci U S A ; 120(10): e2215290120, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36848557

RESUMEN

Major Facilitator Superfamily Domain containing 2a (Mfsd2a) is a sodium-dependent lysophosphatidylcholine (LPC) transporter expressed at the blood-brain barrier that constitutes the main pathway by which the brain obtains omega-3 fatty acids, such as docosahexanoic acid. Mfsd2a deficiency in humans results in severe microcephaly, underscoring the importance of LPC transport by Mfsd2a for brain development. Biochemical studies and recent cryo-electron microscopy (cryo-EM) structures of Mfsd2a bound to LPC suggest that Mfsd2a transports LPC via an alternating access mechanism between outward-facing and inward-facing conformational states in which the LPC inverts during transport between the outer and inner leaflet of a membrane. However, direct biochemical evidence of flippase activity by Mfsd2a has not been demonstrated and it is not understood how Mfsd2a could invert LPC between the outer and inner leaflet of the membrane in a sodium-dependent manner. Here, we established a unique in vitro assay using recombinant Mfsd2a reconstituted in liposomes that exploits the ability of Mfsd2a to transport lysophosphatidylserine (LPS) coupled with a small molecule LPS binding fluorophore that allowed for monitoring of directional flipping of the LPS headgroup from the outer to the inner liposome membrane. Using this assay, we demonstrate that Mfsd2a flips LPS from the outer to the inner leaflet of a membrane bilayer in a sodium-dependent manner. Furthermore, using cryo-EM structures as guides together with mutagenesis and a cell-based transport assay, we identify amino acid residues important for Mfsd2a activity that likely constitute substrate interaction domains. These studies provide direct biochemical evidence that Mfsd2a functions as a lysolipid flippase.


Asunto(s)
Ácidos Grasos Omega-3 , Simportadores , Humanos , Microscopía por Crioelectrón , Lipopolisacáridos , Lisofosfatidilcolinas , Aminoácidos , Liposomas
3.
Proc Natl Acad Sci U S A ; 119(40): e2210353119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161949

RESUMEN

The lysosome is central to the degradation of proteins, carbohydrates, and lipids and their salvage back to the cytosol for reutilization. Lysosomal transporters for amino acids, sugars, and cholesterol have been identified, and the metabolic fates of these molecules in the cytoplasm have been elucidated. Remarkably, it is not known whether lysosomal salvage exists for glycerophospholipids, the major constituents of cellular membranes. By using a transport assay screen against orphan lysosomal transporters, we identified the major facilitator superfamily protein Spns1 that is ubiquitously expressed in all tissues as a proton-dependent lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE) transporter, with LPC and LPE being the lysosomal breakdown products of the most abundant eukaryotic phospholipids, phosphatidylcholine and phosphatidylethanolamine, respectively. Spns1 deficiency in cells, zebrafish embryos, and mouse liver resulted in lysosomal accumulation of LPC and LPE species with pathological consequences on lysosomal function. Flux analysis using stable isotope-labeled phospholipid apolipoprotein E nanodiscs targeted to lysosomes showed that LPC was transported out of lysosomes in an Spns1-dependent manner and re-esterified back into the cytoplasmic pools of phosphatidylcholine. Our findings identify a phospholipid salvage pathway from lysosomes to the cytosol that is dependent on Spns1 and critical for maintaining normal lysosomal function.


Asunto(s)
Lisofosfolípidos , Proteínas de Transporte de Membrana , Fosfatidiletanolaminas , Pez Cebra , Animales , Lisofosfatidilcolinas/metabolismo , Lisofosfolípidos/metabolismo , Lisosomas/metabolismo , Proteínas de la Membrana , Proteínas de Transporte de Membrana/metabolismo , Ratones , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Protones , Pez Cebra/metabolismo , Proteínas de Pez Cebra
4.
Annu Rev Biochem ; 91: 705-729, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35320686

RESUMEN

Biosynthesis of many important polysaccharides (including peptidoglycan, lipopolysaccharide, and N-linked glycans) necessitates the transport of lipid-linked oligosaccharides (LLO) across membranes from their cytosolic site of synthesis to their sites of utilization. Much of our current understanding of LLO transport comes from genetic, biochemical, and structural studies of the multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) superfamily protein MurJ, which flips the peptidoglycan precursor lipid II. MurJ plays a pivotal role in bacterial cell wall synthesis and is an emerging antibiotic target. Here, we review the mechanism of LLO flipping by MurJ, including the structural basis for lipid II flipping and ion coupling. We then discuss inhibition of MurJ by antibacterials, including humimycins and the phage M lysis protein, as well as how studies on MurJ could provide insight into other flippases, both within and beyond the MOP superfamily.


Asunto(s)
Bacterias/química , Proteínas de Transferencia de Fosfolípidos/química , Bacterias/clasificación , Bacterias/citología , Bacterias/metabolismo , Lípidos , Peptidoglicano , Proteínas de Transferencia de Fosfolípidos/genética , Proteínas de Transferencia de Fosfolípidos/metabolismo
5.
Eur J Hum Genet ; 28(11): 1509-1519, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32572202

RESUMEN

Major Facilitator Superfamily Domain containing 2a (MFSD2A) is an essential endothelial lipid transporter at the blood-brain barrier. Biallelic variants affecting function in MFSD2A cause autosomal recessive primary microcephaly 15 (MCPH15, OMIM# 616486). We sought to expand our knowledge of the phenotypic spectrum of MCPH15 and demonstrate the underlying mechanism of inactivation of the MFSD2A transporter. We carried out detailed analysis of the clinical and neuroradiological features of a series of 27 MCPH15 cases, including eight new individuals from seven unrelated families. Genetic investigation was performed through exome sequencing (ES). Structural insights on the human Mfsd2a model and in-vitro biochemical assays were used to investigate the functional impact of the identified variants. All patients had primary microcephaly and severe developmental delay. Brain MRI showed variable degrees of white matter reduction, ventricular enlargement, callosal hypodysgenesis, and pontine and vermian hypoplasia. ES led to the identification of six novel biallelic MFSD2A variants (NG_053084.1, NM_032793.5: c.556+1G>A, c.748G>T; p.(Val250Phe), c.750_753del; p.(Cys251SerfsTer3), c.977G>A; p.(Arg326His), c.1386_1435del; p.(Gln462HisfsTer17), and c.1478C>T; p.(Pro493Leu)) and two recurrent variants (NM_032793.5: c.593C>T; p.(Thr198Met) and c.476C>T; p.(Thr159Met)). All these variants and the previously reported NM_032793.5: c.490C>A; p.(Pro164Thr) resulted in either reduced MFSD2A expression and/or transport activity. Our study further delineates the phenotypic spectrum of MCPH15, refining its clinical and neuroradiological characterization and supporting that MFSD2A deficiency causes early prenatal brain developmental disruption. We also show that poor MFSD2A expression despite normal transporter activity is a relevant pathomechanism in MCPH15.


Asunto(s)
Agenesia del Cuerpo Calloso/genética , Discapacidades del Desarrollo/genética , Microcefalia/genética , Mutación , Simportadores/genética , Adolescente , Adulto , Agenesia del Cuerpo Calloso/diagnóstico por imagen , Agenesia del Cuerpo Calloso/patología , Niño , Preescolar , Discapacidades del Desarrollo/diagnóstico por imagen , Discapacidades del Desarrollo/patología , Femenino , Células HEK293 , Humanos , Lactante , Imagen por Resonancia Magnética , Masculino , Microcefalia/diagnóstico por imagen , Microcefalia/patología , Dominios Proteicos , Simportadores/química , Simportadores/metabolismo , Síndrome
6.
Nat Commun ; 10(1): 1736, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30988294

RESUMEN

The biosynthesis of many polysaccharides, including bacterial peptidoglycan and eukaryotic N-linked glycans, requires transport of lipid-linked oligosaccharide (LLO) precursors across the membrane by specialized flippases. MurJ is the flippase for the lipid-linked peptidoglycan precursor Lipid II, a key player in bacterial cell wall synthesis, and a target of recently discovered antibacterials. However, the flipping mechanism of LLOs including Lipid II remains poorly understood due to a dearth of structural information. Here we report crystal structures of MurJ captured in inward-closed, inward-open, inward-occluded and outward-facing conformations. Together with mutagenesis studies, we elucidate the conformational transitions in MurJ that mediate lipid flipping, identify the key ion for function, and provide a framework for the development of inhibitors.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Proteínas de Transferencia de Fosfolípidos/química , Cristalografía por Rayos X , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Conformación Proteica , Dominios Proteicos
7.
Nat Struct Mol Biol ; 25(3): 217-224, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29459785

RESUMEN

N-linked glycosylation is a predominant post-translational modification of protein in eukaryotes, and its dysregulation is the etiology of several human disorders. The enzyme UDP-N-acetylglucosamine:dolichyl-phosphate N-acetylglucosaminephosphotransferase (GlcNAc-1-P-transferase or GPT) catalyzes the first and committed step of N-linked glycosylation in the endoplasmic reticulum membrane, and it is the target of the natural product tunicamycin. Tunicamycin has potent antibacterial activity, inhibiting the bacterial cell wall synthesis enzyme MraY, but its usefulness as an antibiotic is limited by off-target inhibition of human GPT. Our understanding of how tunicamycin inhibits N-linked glycosylation and efforts to selectively target MraY are hampered by a lack of structural information. Here we present crystal structures of human GPT in complex with tunicamycin. Structural and functional analyses reveal the difference between GPT and MraY in their mechanisms of inhibition by tunicamycin. We demonstrate that this difference could be exploited to design MraY-specific inhibitors as potential antibiotics.


Asunto(s)
Antibacterianos/química , Inhibidores Enzimáticos/química , Transferasas (Grupos de Otros Fosfatos Sustitutos)/química , Tunicamicina/química , Antibacterianos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Inhibidores Enzimáticos/metabolismo , Glicosilación , Humanos , Magnesio/química , Modelos Moleculares , Unión Proteica , Multimerización de Proteína , Especificidad por Sustrato , Transferasas/química , Transferasas/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Tunicamicina/metabolismo
8.
Nat Struct Mol Biol ; 24(2): 171-176, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28024149

RESUMEN

Peptidoglycan (PG) protects bacteria from osmotic lysis, and its biogenesis is a key antibiotic target. A central step in PG biosynthesis is flipping of the lipid-linked PG precursor lipid II across the cytoplasmic membrane for subsequent incorporation into PG. MurJ, part of the multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) transporter superfamily, was recently shown to carry out this process. However, understanding of how MurJ flips lipid II, and of how MOP transporters operate in general, remains limited due to a lack of structural information. Here we present a crystal structure of MurJ from Thermosipho africanus in an inward-facing conformation at 2.0-Å resolution. A hydrophobic groove is formed by two C-terminal transmembrane helices, which leads into a large central cavity that is mostly cationic. Our studies not only provide the first structural glimpse of MurJ but also suggest that alternating access is important for MurJ function, which may be applicable to other MOP superfamily transporters.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Transferencia de Fosfolípidos/química , Bacterias/enzimología , Dominio Catalítico , Cristalografía por Rayos X , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...