Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell ; 187(8): 1990-2009.e19, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38513664

RESUMEN

Multiple sclerosis (MS) is a neurological disease characterized by multifocal lesions and smoldering pathology. Although single-cell analyses provided insights into cytopathology, evolving cellular processes underlying MS remain poorly understood. We investigated the cellular dynamics of MS by modeling temporal and regional rates of disease progression in mouse experimental autoimmune encephalomyelitis (EAE). By performing single-cell spatial expression profiling using in situ sequencing (ISS), we annotated disease neighborhoods and found centrifugal evolution of active lesions. We demonstrated that disease-associated (DA)-glia arise independently of lesions and are dynamically induced and resolved over the disease course. Single-cell spatial mapping of human archival MS spinal cords confirmed the differential distribution of homeostatic and DA-glia, enabled deconvolution of active and inactive lesions into sub-compartments, and identified new lesion areas. By establishing a spatial resource of mouse and human MS neuropathology at a single-cell resolution, our study unveils the intricate cellular dynamics underlying MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Médula Espinal , Animales , Humanos , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Médula Espinal/metabolismo , Médula Espinal/patología , Ratones , Análisis de Expresión Génica de una Sola Célula , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , Neuroglía/metabolismo , Neuroglía/patología
2.
Nature ; 616(7955): 113-122, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36922587

RESUMEN

Emerging spatial technologies, including spatial transcriptomics and spatial epigenomics, are becoming powerful tools for profiling of cellular states in the tissue context1-5. However, current methods capture only one layer of omics information at a time, precluding the possibility of examining the mechanistic relationship across the central dogma of molecular biology. Here, we present two technologies for spatially resolved, genome-wide, joint profiling of the epigenome and transcriptome by cosequencing chromatin accessibility and gene expression, or histone modifications (H3K27me3, H3K27ac or H3K4me3) and gene expression on the same tissue section at near-single-cell resolution. These were applied to embryonic and juvenile mouse brain, as well as adult human brain, to map how epigenetic mechanisms control transcriptional phenotype and cell dynamics in tissue. Although highly concordant tissue features were identified by either spatial epigenome or spatial transcriptome we also observed distinct patterns, suggesting their differential roles in defining cell states. Linking epigenome to transcriptome pixel by pixel allows the uncovering of new insights in spatial epigenetic priming, differentiation and gene regulation within the tissue architecture. These technologies are of great interest in life science and biomedical research.


Asunto(s)
Cromatina , Epigenoma , Mamíferos , Transcriptoma , Animales , Humanos , Ratones , Cromatina/genética , Cromatina/metabolismo , Epigénesis Genética , Epigenómica , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Mamíferos/genética , Histonas/química , Histonas/metabolismo , Análisis de la Célula Individual , Especificidad de Órganos , Encéfalo/embriología , Encéfalo/metabolismo , Envejecimiento/genética
3.
Nature ; 609(7926): 375-383, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35978191

RESUMEN

Cellular function in tissue is dependent on the local environment, requiring new methods for spatial mapping of biomolecules and cells in the tissue context1. The emergence of spatial transcriptomics has enabled genome-scale gene expression mapping2-5, but the ability to capture spatial epigenetic information of tissue at the cellular level and genome scale is lacking. Here we describe a method for spatially resolved chromatin accessibility profiling of tissue sections using next-generation sequencing (spatial-ATAC-seq) by combining in situ Tn5 transposition chemistry6 and microfluidic deterministic barcoding5. Profiling mouse embryos using spatial-ATAC-seq delineated tissue-region-specific epigenetic landscapes and identified gene regulators involved in the development of the central nervous system. Mapping the accessible genome in the mouse and human brain revealed the intricate arealization of brain regions. Applying spatial-ATAC-seq to tonsil tissue resolved the spatially distinct organization of immune cell types and states in lymphoid follicles and extrafollicular zones. This technology progresses spatial biology by enabling spatially resolved chromatin accessibility profiling to improve our understanding of cell identity, cell state and cell fate decision in relation to epigenetic underpinnings in development and disease.


Asunto(s)
Ensamble y Desensamble de Cromatina , Secuenciación de Inmunoprecipitación de Cromatina , Cromatina , Animales , Encéfalo/metabolismo , Diferenciación Celular , Linaje de la Célula , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/genética , Secuenciación de Inmunoprecipitación de Cromatina/métodos , Epigenómica , Perfilación de la Expresión Génica , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Ratones , Tonsila Palatina/citología , Tonsila Palatina/inmunología
4.
BMC Biol ; 20(1): 122, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35610641

RESUMEN

BACKGROUND: Oligodendrocytes are glial cells that support and insulate axons in the central nervous system through the production of myelin. Oligodendrocytes arise throughout embryonic and early postnatal development from oligodendrocyte precursor cells (OPCs), and recent work demonstrated that they are a transcriptional heterogeneous cell population, but the regional and functional implications of this heterogeneity are less clear. Here, we apply in situ sequencing (ISS) to simultaneously probe the expression of 124 marker genes of distinct oligodendrocyte populations, providing comprehensive maps of the corpus callosum, cingulate, motor, and somatosensory cortex in the brain, as well as gray matter (GM) and white matter (WM) regions in the spinal cord, at postnatal (P10), juvenile (P20), and young adult (P60) stages. We systematically compare the abundances of these populations and investigate the neighboring preference of distinct oligodendrocyte populations. RESULTS: We observed that oligodendrocyte lineage progression is more advanced in the juvenile spinal cord compared to the brain, corroborating with previous studies. We found myelination still ongoing in the adult corpus callosum while it was more advanced in the cortex. Interestingly, we also observed a lateral-to-medial gradient of oligodendrocyte lineage progression in the juvenile cortex, which could be linked to arealization, as well as a deep-to-superficial gradient with mature oligodendrocytes preferentially accumulating in the deeper layers of the cortex. The ISS experiments also exposed differences in abundances and population dynamics over time between GM and WM regions in the brain and spinal cord, indicating regional differences within GM and WM, and we found that neighboring preferences of some oligodendroglia populations are altered from the juvenile to the adult CNS. CONCLUSIONS: Overall, our ISS experiments reveal spatial heterogeneity of oligodendrocyte lineage progression in the brain and spinal cord and uncover differences in the timing of oligodendrocyte differentiation and myelination, which could be relevant to further investigate functional heterogeneity of oligodendroglia, especially in the context of injury or disease.


Asunto(s)
Vaina de Mielina , Oligodendroglía , Axones/fisiología , Diferenciación Celular/genética , Linaje de la Célula , Sistema Nervioso Central/fisiología , Vaina de Mielina/genética , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo
5.
Dev Cell ; 57(11): 1421-1436.e5, 2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35523173

RESUMEN

Oligodendrogenesis in the human central nervous system has been observed mainly at the second trimester of gestation, a much later developmental stage compared to oligodendrogenesis in mice. Here, we characterize the transcriptomic neural diversity in the human forebrain at post-conception weeks (PCW) 8-10. Using single-cell RNA sequencing, we find evidence of the emergence of a first wave of oligodendrocyte lineage cells as early as PCW 8, which we also confirm at the epigenomic level through the use of single-cell ATAC-seq. Using regulatory network inference, we predict key transcriptional events leading to the specification of oligodendrocyte precursor cells (OPCs). Moreover, by profiling the spatial expression of 50 key genes through the use of in situ sequencing (ISS), we identify regions in the human ventral fetal forebrain where oligodendrogenesis first occurs. Our results indicate evolutionary conservation of the first wave of oligodendrogenesis between mice and humans and describe regulatory mechanisms involved in human OPC specification.


Asunto(s)
Oligodendroglía , Prosencéfalo , Animales , Diferenciación Celular/fisiología , Humanos , Ratones , Oligodendroglía/metabolismo , Transcriptoma/genética
6.
Science ; 375(6581): 681-686, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35143307

RESUMEN

Spatial omics emerged as a new frontier of biological and biomedical research. Here, we present spatial-CUT&Tag for spatially resolved genome-wide profiling of histone modifications by combining in situ CUT&Tag chemistry, microfluidic deterministic barcoding, and next-generation sequencing. Spatially resolved chromatin states in mouse embryos revealed tissue-type-specific epigenetic regulations in concordance with ENCODE references and provide spatial information at tissue scale. Spatial-CUT&Tag revealed epigenetic control of the cortical layer development and spatial patterning of cell types determined by histone modification in mouse brain. Single-cell epigenomes can be derived in situ by identifying 20-micrometer pixels containing only one nucleus using immunofluorescence imaging. Spatial chromatin modification profiling in tissue may offer new opportunities to study epigenetic regulation, cell function, and fate decision in normal physiology and pathogenesis.


Asunto(s)
Encéfalo/citología , Encéfalo/metabolismo , Cromatina/metabolismo , Epigénesis Genética , Código de Histonas , Histonas/metabolismo , Animales , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Núcleo Celular/metabolismo , Epigenoma , Secuenciación de Nucleótidos de Alto Rendimiento , Ratones , Microfluídica , Neuronas/citología , Análisis de la Célula Individual
7.
Nat Commun ; 11(1): 5860, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33203872

RESUMEN

Mature oligodendrocytes (MOLs) show transcriptional heterogeneity, the functional consequences of which are unclear. MOL heterogeneity might correlate with the local environment or their interactions with different neuron types. Here, we show that distinct MOL populations have spatial preference in the mammalian central nervous system (CNS). We found that MOL type 2 (MOL2) is enriched in the spinal cord when compared to the brain, while MOL types 5 and 6 (MOL5/6) increase their contribution to the OL lineage with age in all analyzed regions. MOL2 and MOL5/6 also have distinct spatial preference in the spinal cord regions where motor and sensory tracts run. OL progenitor cells (OPCs) are not specified into distinct MOL populations during development, excluding a major contribution of OPC intrinsic mechanisms determining MOL heterogeneity. In disease, MOL2 and MOL5/6 present different susceptibility during the chronic phase following traumatic spinal cord injury. Our results demonstrate that the distinct MOL populations have different spatial preference and different responses to disease.


Asunto(s)
Oligodendroglía/citología , Oligodendroglía/patología , Traumatismos de la Médula Espinal/fisiopatología , Animales , Axones/patología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Biomarcadores/metabolismo , Linaje de la Célula , Cuerpo Calloso/citología , Encefalomielitis Autoinmune Experimental/patología , Femenino , Perfilación de la Expresión Génica , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Noqueados , Ratones Transgénicos , Oligodendroglía/fisiología , Análisis de la Célula Individual , Médula Espinal/citología
8.
Mol Cell ; 74(2): 254-267.e10, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30824372

RESUMEN

DNA damage response (DDR) involves dramatic transcriptional alterations, the mechanisms of which remain ill defined. Here, we show that following genotoxic stress, the RNA-binding motif protein 7 (RBM7) stimulates RNA polymerase II (Pol II) transcription and promotes cell viability by activating the positive transcription elongation factor b (P-TEFb) via its release from the inhibitory 7SK small nuclear ribonucleoprotein (7SK snRNP). This is mediated by activation of p38MAPK, which triggers enhanced binding of RBM7 with core subunits of 7SK snRNP. In turn, P-TEFb relocates to chromatin to induce transcription of short units, including key DDR genes and multiple classes of non-coding RNAs. Critically, interfering with the axis of RBM7 and P-TEFb provokes cellular hypersensitivity to DNA-damage-inducing agents due to activation of apoptosis. Our work uncovers the importance of stress-dependent stimulation of Pol II pause release, which enables a pro-survival transcriptional response that is crucial for cell fate upon genotoxic insult.


Asunto(s)
Factor B de Elongación Transcripcional Positiva/genética , ARN Polimerasa II/genética , Proteínas de Unión al ARN/genética , Transcripción Genética , Apoptosis/genética , Supervivencia Celular/genética , Daño del ADN/genética , Células HEK293 , Humanos , ARN Largo no Codificante/genética , Ribonucleoproteínas Nucleares Pequeñas/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética
9.
PLoS Pathog ; 14(11): e1007402, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30395647

RESUMEN

Transcription of HIV provirus is a key step of the viral cycle, and depends on the recruitment of the cellular positive transcription elongation factor b (P-TEFb) to the HIV promoter. The viral transactivator Tat can displace P-TEFb from the 7SK small nuclear ribonucleoprotein, where it is bound and inactivated by HEXIM1, and bring it to TAR, which allows the stalled RNA polymerase II to transition to successful transcription elongation. In this study, we designed a chimeric inhibitor of HIV transcription by combining functional domains from HEXIM1 and Tat. The chimera (HT1) potently inhibited gene expression from the HIV promoter, by competing with Tat for TAR and P-TEFb binding, while keeping the latter inactive. HT1 inhibited spreading infection as well as viral reactivation in lymphocyte T cell line models of HIV latency, with little effect on cellular transcription and metabolism. This proof-of-concept study validates an innovative approach to interfering with HIV transcription via peptide mimicry and competition for RNA-protein interactions. HT1 represents a new candidate for HIV therapy, or HIV cure via the proposed block and lock strategy.


Asunto(s)
Infecciones por VIH/terapia , VIH-1/fisiología , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes de Fusión/biosíntesis , Replicación Viral/fisiología , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Células HEK293 , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , Duplicado del Terminal Largo de VIH , Seropositividad para VIH , VIH-1/genética , VIH-1/metabolismo , Células HeLa , Humanos , Células Jurkat , Provirus/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Proteínas de Unión al ARN/genética , Proteínas Recombinantes de Fusión/genética , Factores de Transcripción , Latencia del Virus , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA