Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(11)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37298091

RESUMEN

Adaptive plasticity of Breast Cancer stem cells (BCSCs) is strongly correlated with cancer progression and resistance, leading to a poor prognosis. In this study, we report the expression profile of several pioneer transcription factors of the Oct3/4 network associated with tumor initiation and metastasis. In the triple negative breast cancer cell line (MDA-MB-231) stably transfected with human Oct3/4-GFP, differentially expressed genes (DEGs) were identified using qPCR and microarray, and the resistance to paclitaxel was assessed using an MTS assay. The tumor-seeding potential in immunocompromised (NOD-SCID) mice and DEGs in the tumors were also assessed along with the intra-tumor (CD44+/CD24-) expression using flow cytometry. Unlike 2-D cultures, the Oct3/4-GFP expression was homogenous and stable in 3-D mammospheres developed from BCSCs. A total of 25 DEGs including Gata6, FoxA2, Sall4, Zic2, H2afJ, Stc1 and Bmi1 were identified in Oct3/4 activated cells coupled with a significantly increased resistance to paclitaxel. In mice, the higher Oct3/4 expression in tumors correlated with enhanced tumorigenic potential and aggressive growth, with metastatic lesions showing a >5-fold upregulation of DEGs compared to orthotopic tumors and variability in different tissues with the highest modulation in the brain. Serially re-implanting tumors in mice as a model of recurrence and metastasis highlighted the sustained upregulation of Sall4, c-Myc, Mmp1, Mmp9 and Dkk1 genes in metastatic lesions with a 2-fold higher expression of stem cell markers (CD44+/CD24-). Thus, Oct3/4 transcriptome may drive the differentiation and maintenance of BCSCs, promoting their tumorigenic potential, metastasis and resistance to drugs such as paclitaxel with tissue-specific heterogeneity.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Ratones , Humanos , Animales , Femenino , Neoplasias de la Mama/metabolismo , Regulación hacia Arriba , Ratones SCID , Ratones Endogámicos NOD , Neoplasias de la Mama Triple Negativas/patología , Paclitaxel/farmacología , Paclitaxel/metabolismo , Células Madre Neoplásicas/metabolismo , Línea Celular Tumoral
2.
J Neurosurg Sci ; 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34342203

RESUMEN

Glioblastoma multiforme (GBM) is a lethal brain tumor characterized by developmental hierarchical phenotypic heterogeneity, therapy resistance and recurrent growth. Neural stem cells (NSCs) from human central nervous system (CNS), and glioblastoma stem cells from patient-derived GBM (pdGSC) samples and cultured in both 2D well-plate and 3D monoclonal neurosphere culture system (pdMNCS). The pdMNCS model shows promise to establish a relevant 3D-tumor environment that maintains GBM cells in the stem cell phase within suspended neurospheres. Utilizing the pdMNCS, we examined GBM cell-lines for a wide spectrum of developmental cancer stem cell markers, including the early blastocyst inner-cell mass (ICM)-specific Nanog, Oct3/4,B, and CD133. We observed that MNCS epigenotype is recapitulated using gliomasphere-derived cells. CD133, the marker of GSC is robustly expressed in 3D-gliomaspheres and localized within the plasma membrane compartment. Conversely, gliomasphere cultures grown in conventional 2D culture quickly lost CD133 expression, indicating its variable expression is dependent on cell-culture conditions. Critically, this experiment demonstrates incomplete differentiation of cytoskeleton microtubules and intermediate filaments (IFs) of patient derived cells, similar to commercially available GBM cell lines. Subsequently, in order to determine whether Oct3/4 it was necessary for CD133 expression and cancer stemness, we transfected 2D and 3D culture with siRNA against Oct3/4 and found a significant reduction in gliomasphere formation. These results suggest that expression of Oct3/4,Aand CD133 suppress differentiation of GSCs.

3.
J Biol Chem ; 287(3): 2247-56, 2012 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-22128169

RESUMEN

We report that Sh3rf2, a homologue of the pro-apoptotic scaffold POSH (Plenty of SH3s), acts as an anti-apoptotic regulator for the c-Jun N-terminal kinase (JNK) pathway. siRNA-mediated knockdown of Sh3rf2 promotes apoptosis of neuronal PC12 cells, cultured cortical neurons, and C6 glioma cells. This death appears to result from activation of JNK signaling. Loss of Sh3rf2 triggers activation of JNK and its target c-Jun. Also, apoptosis promoted by Sh3rf2 knockdown is inhibited by dominant-negative c-Jun as well as by a JNK inhibitor. Investigation of the mechanism by which Sh3rf2 regulates cell survival implicates POSH, a scaffold required for activation of pro-apoptotic JNK/c-Jun signaling. In cells lacking POSH, Sh3rf2 knockdown is unable to activate JNK. We further find that Sh3rf2 binds POSH to reduce its levels by a mechanism that requires the RING domains of both proteins and that appears to involve proteasomal POSH degradation. Conversely, knockdown of Sh3rf2 promotes the stabilization of POSH protein and activation of JNK signaling. Finally, we show that endogenous Sh3rf2 protein rapidly decreases following several different apoptotic stimuli and that knockdown of Sh3rf2 activates the pro-apoptotic JNK pathway in neuronal cells. These findings support a model in which Sh3rf2 promotes proteasomal degradation of pro-apoptotic POSH in healthy cells and in which apoptotic stimuli lead to rapid loss of Sh3rf2 expression, and consequently to stabilization of POSH and JNK activation and cell death. On the basis of these observations, we propose the alternative name POSHER (POSH-eliminating RING protein) for the Sh3rf2 protein.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Corteza Cerebral/metabolismo , Modelos Biológicos , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Supervivencia Celular/fisiología , Corteza Cerebral/citología , Activación Enzimática , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Células PC12 , Complejo de la Endopetidasa Proteasomal/genética , Proteínas Proto-Oncogénicas c-jun/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo , Ratas , Transducción de Señal/fisiología
4.
Dev Neurosci ; 29(4-5): 355-62, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17762203

RESUMEN

The c-Jun N-terminal kinase (JNK) pathway plays an important role in neuronal apoptosis both during normal CNS development and following stroke in adult animals. As with other MAP kinase pathways, scaffold proteins regulate JNK signaling. The scaffold protein POSH (Plenty of SH3s) enhances JNK activation and apoptosis. We identified a POSH homologue, POSH2, which was cloned from rat brain and is present in cortical neurons in vitro. POSH2 mRNA is expressed in a variety of tissues including brain, and this distribution partially overlaps with that of POSH. POSH2 overexpression promotes JNK activation in HEK293 cells and promotes apoptosis in neuronal PC12 cells, which is blocked by a dominant-negative c-Jun. Finally POSH2 contains a functional RING domain and enhances the stability of coexpressed mixed-lineage kinases. These results indicate that POSH2 may regulate JNK activation and consequent apoptosis under conditions of increased expression.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Apoptosis/fisiología , Encéfalo/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/aislamiento & purificación , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Corteza Cerebral/metabolismo , Activación Enzimática/fisiología , Estabilidad de Enzimas/fisiología , Humanos , Sistema de Señalización de MAP Quinasas/fisiología , Datos de Secuencia Molecular , Neuronas/metabolismo , Células PC12 , Estructura Terciaria de Proteína/fisiología , ARN Mensajero/metabolismo , Ratas
5.
J Biol Chem ; 282(2): 1288-95, 2007 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-17095503

RESUMEN

Nix, a pro-apoptotic BH3-only protein, promotes apoptosis of non-neuronal cells, although the mechanisms involved remain incompletely understood. Using a yeast two-hybrid screen with POSH (plenty of SH3 domains, a scaffold involved in activation of the apoptotic JNK/c-Jun pathway) as the bait, we identified an interaction between POSH and Nix. Co-immunoprecipitation and in vitro binding studies confirmed a direct interaction between POSH and Nix in mammalian cells. When overexpressed in HEK293 cells, Nix promotes apoptosis along with enhanced phosphorylation/activation of JNKs and their target c-Jun. These effects appear to be dependent on POSH because Nix does not promote either JNK/c-Jun phosphorylation or apoptosis of 293 cells that do not express POSH. Nix and POSH appear to mutually stabilize one another and this effect could contribute to their promotion of death. Past work showed induction of Nix transcripts in a cellular model of Parkinson disease based on neuronal PC12 cells exposed to 6-hydroxydopamine. Here, we confirm elevation of Nix protein in this model and that Nix over-expression causes apoptotic death of PC12 cells by a mechanism dependent on c-Jun activation. Expression of s-Nix, a dominant-negative form of Nix, protects neuronal PC12 cells from 6-hydroxydopamine but not from nerve growth factor deprivation. These results indicate that Nix promotes cell death via interaction with POSH and activation of the JNK/c-Jun pathway and that Nix protein is induced and contributes to cell death in a cellular model of Parkinson disease.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis/fisiología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Enfermedad de Parkinson/patología , Animales , Apoptosis/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Humanos , Riñón/citología , Proteínas de la Membrana/genética , Ratones , Proteínas Mitocondriales/genética , Neuronas/metabolismo , Neuronas/patología , Oxidopamina/farmacología , Células PC12 , Enfermedad de Parkinson/metabolismo , Fosforilación , Plásmidos , Unión Proteica , Ratas , Simpaticolíticos/farmacología , Técnicas del Sistema de Dos Híbridos
6.
J Biol Chem ; 281(22): 15517-24, 2006 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-16571722

RESUMEN

A sequential pathway (the JNK pathway) that includes activation of Rac1/Cdc42, mixed lineage kinases, MAP kinase kinases 4 and 7, and JNKs plays a required role in many paradigms of apoptotic cell death. However, the means by which this pathway is assembled and directed toward apoptotic death has been unclear. Here, we report that propagation of the apoptotic JNK pathway requires the cooperative interaction of two molecular scaffolds, POSH and JIPs. POSH (plenty of SH3s) is a multidomain GTP-Rac1-interacting protein that binds and promotes activation of mixed lineage kinases. JIPs are reported to bind MAP kinase kinases 4/7 and JNKs. We find that POSH and JIPs directly associate with one another to form a multiprotein complex, PJAC (POSH-JIP apoptotic complex), that includes all of the known kinase components of the pathway. Our observations indicate that this complex is required for JNK activation and cell death in response to apoptotic stimuli.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis/fisiología , Proteínas del Citoesqueleto/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Secuencia de Bases , Línea Celular , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Cartilla de ADN/genética , Activación Enzimática , Humanos , Técnicas In Vitro , Proteínas Quinasas JNK Activadas por Mitógenos/química , Sistema de Señalización de MAP Quinasas , Ratones , Modelos Biológicos , Complejos Multiproteicos , Células PC12 , Unión Proteica , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
7.
EMBO J ; 22(2): 252-61, 2003 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-12514131

RESUMEN

We report that the multidomain protein POSH (plenty of SH3s) acts as a scaffold for the JNK pathway of neuronal death. This pathway consists of a sequential cascade involving activated Rac1/Cdc42, mixed-lineage kinases (MLKs), MAP kinase kinases (MKKs) 4 and 7, c-Jun N-terminal kinases (JNKs) and c-Jun, and is required for neuronal death induced by various means including nerve growth factor (NGF) deprivation. In addition to binding GTP-Rac1 as described previously, we find that POSH binds MLKs both in vivo and in vitro, and complexes with MKKs 4 and 7 and with JNKs. POSH overexpression promotes apoptotic neuronal death and this is suppressed by dominant-negative forms of MLKs, MKK4/7 and c-Jun, and by an MLK inhibitor. Moreover, a POSH antisense oligonucleotide and a POSH small interfering RNA (siRNA) suppress c-Jun phosphorylation and neuronal apoptosis induced by NGF withdrawal. Thus, POSH appears to function as a scaffold in a multiprotein complex that links activated Rac1 and downstream elements of the JNK apoptotic cascade.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Apoptosis/fisiología , Proteínas Portadoras/metabolismo , Proteínas del Citoesqueleto/metabolismo , MAP Quinasa Quinasa 4 , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Transducción de Señal/fisiología , Proteína de Unión al GTP rac1/metabolismo , Animales , Proteínas Portadoras/genética , Péptidos de Penetración Celular , Cisteína Endopeptidasas/metabolismo , Proteínas del Citoesqueleto/genética , Activación Enzimática , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos , Quinasas Quinasa Quinasa PAM/metabolismo , Sustancias Macromoleculares , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Complejos Multienzimáticos/metabolismo , Complejos Multiproteicos , Factor de Crecimiento Nervioso/metabolismo , Neuronas/citología , Neuronas/metabolismo , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , Células PC12 , Fosforilación , Complejo de la Endopetidasa Proteasomal , Unión Proteica , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Sistema Nervioso Simpático/citología , Sistema Nervioso Simpático/metabolismo , Dedos de Zinc , Dominios Homologos src
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA