Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Anim Ecol ; 91(2): 320-333, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34693529

RESUMEN

Organisms are constantly under selection to respond effectively to diverse, sometimes rapid, changes in their environment, but not all individuals are equally plastic in their behaviour. Although cognitive processes and personality are expected to influence individual behavioural plasticity, the effects reported are highly inconsistent, which we hypothesise is because ecological context is usually not considered. We explored how one type of behavioural plasticity, foraging flexibility, was associated with inhibitory control (assayed using a detour-reaching task) and exploration behaviour in a novel environment (a trait closely linked to the fast-slow personality axis). We investigated how these effects varied across two experimentally manipulated ecological contexts-food value and predation risk. In the first phase of the experiment, we trained great tits Parus major to retrieve high value (preferred) food that was hidden in sand so that this became the familiar food source. In the second phase, we offered them the same familiar hidden food at the same time as a new alternative option that was visible on the surface, which was either high or low value, and under either high or low perceived predation risk. Foraging flexibility was defined as the proportion of choices made during 4-min trials that were for the new alternative food source. Our assays captured consistent differences among individuals in foraging flexibility. Inhibitory control was associated with foraging flexibility-birds with high inhibitory control were more flexible when the alternative food was of high value, suggesting they inhibited the urge to select the familiar food and instead selected the new food option. Exploration behaviour also predicted flexibility-fast explorers were more flexible, supporting the information-gathering hypothesis. This tendency was especially strong under high predation risk, suggesting risk aversion also influenced the observed flexibility because fast explorers are risk prone and the new unfamiliar food was perceived to be the risky option. Thus, both behaviours predicted flexibility, and these links were at least partly dependent on ecological conditions. Our results demonstrate that an executive cognitive function (inhibitory control) and a behavioural assay of a well-known personality axis are both associated with individual variation in the plasticity of a key functional behaviour. That their effects on foraging flexibility were primarily observed as interactions with food value or predation risk treatments also suggest that the population-level consequences of some behavioural mechanisms may only be revealed across key ecological conditions.


Asunto(s)
Passeriformes , Animales , Conducta Exploratoria , Personalidad , Fenotipo , Conducta Predatoria
2.
J Anim Ecol ; 90(11): 2497-2509, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34091901

RESUMEN

The producer-scrounger game is a key element of foraging ecology in many systems. Producing and scrounging typically covary negatively, but partitioning this covariance into contributions of individual plasticity and consistent between individual differences is key to understanding population-level consequences of foraging strategies. Furthermore, little is known about the role cognition plays in the producer-scrounger game. We investigated the role of cognition in these alternative foraging tactics in wild mixed-species flocks of great tits and blue tits, using a production learning task in which we measured individuals' speed of learning to visit the single feeder in an array that would provide them with a food reward. We also quantified the proportion of individuals' feeds that were scrounges ('proportion scrounged'); scrounging was possible if individuals visited immediately after a previous rewarded visitor. Three learning experiments-initial and two reversal learning-enabled us to estimate the repeatability and covariance of each foraging behaviour. First, we examined whether individuals learned to improve their scrounging success (i.e. whether they obtained food by scrounging when there was an opportunity to do so). Second, we quantified the repeatability of proportion scrounged, and asked whether proportion scrounged affected production learning speed among individuals. Third, we used multivariate analyses to partition within- and among-individual components of covariance between proportion scrounged and production learning speed. Individuals improved their scrounging success over time. Birds with a greater proportion scrounged took longer to learn their own rewarding feeder. Although multivariate analyses showed that covariance between proportion scrounged and learning speed was driven primarily by within-individual variation, that is, by behavioural plasticity, among-individual differences also played a role for blue tits. This is the first demonstration of a cognitive trait influencing producing and scrounging in the same wild system, highlighting the importance of cognition in the use of alternative resource acquisition tactics. The results of our covariance analyses suggest the potential for genetic differences in allocation to alternative foraging tactics, which are likely species- and system-dependent. They also point to the need to control for different foraging tactics when studying individual cognition in the wild.


Asunto(s)
Passeriformes , Pájaros Cantores , Animales , Cognición , Conducta Alimentaria , Aprendizaje
3.
Sci Rep ; 10(1): 20783, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33247162

RESUMEN

The microbial community in the gut is influenced by environmental factors, especially diet, which can moderate host behaviour through the microbiome-gut-brain axis. However, the ecological relevance of microbiome-mediated behavioural plasticity in wild animals is unknown. We presented wild-caught great tits (Parus major) with a problem-solving task and showed that performance was weakly associated with variation in the gut microbiome. We then manipulated the gut microbiome by feeding birds one of two diets that differed in their relative levels of fat, protein and fibre content: an insect diet (low content), or a seed diet (high content). Microbial communities were less diverse among individuals given the insect compared to those on the seed diet. Individuals were less likely to problem-solve after being given the insect diet, and the same microbiota metrics that were altered as a consequence of diet were also those that correlated with variation in problem solving performance. Although the effect on problem-solving behaviour could have been caused by motivational or nutritional differences between our treatments, our results nevertheless raise the possibility that dietary induced changes in the gut microbiota could be an important mechanism underlying individual behavioural plasticity in wild populations.


Asunto(s)
Conducta Animal/fisiología , Dieta , Microbioma Gastrointestinal , Passeriformes/microbiología , Passeriformes/fisiología , Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Animales Salvajes/microbiología , Animales Salvajes/fisiología , Animales Salvajes/psicología , Biodiversidad , Ecosistema , Femenino , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiología , Irlanda , Masculino , Solución de Problemas/fisiología , ARN Ribosómico 16S/genética
4.
R Soc Open Sci ; 7(4): 192107, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32431886

RESUMEN

Cognition arguably drives most behaviours in animals, but whether and why individuals in the wild vary consistently in their cognitive performance is scarcely known, especially under mixed-species scenarios. One reason for this is that quantifying the relative importance of individual, contextual, ecological and social factors remains a major challenge. We examined how many of these factors, and sources of bias, affected participation and performance, in an initial discrimination learning experiment and two reversal learning experiments during self-administered trials in a population of great tits and blue tits. Individuals were randomly allocated to different rewarding feeders within an array. Participation was high and only weakly affected by age and species. In the initial learning experiment, great tits learned faster than blue tits. Great tits also showed greater consistency in performance across two reversal learning experiments. Individuals assigned to the feeders on the edge of the array learned faster. More errors were made on feeders neighbouring the rewarded feeder and on feeders that had been rewarded in the previous experiment. Our estimates of learning consistency were unaffected by multiple factors, suggesting that, even though there was some influence of these factors on performance, we obtained a robust measure of discrimination learning in the wild.

5.
Trends Ecol Evol ; 34(6): 545-554, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30902359

RESUMEN

Understanding the drivers of sociality is a major goal in biology. Individual differences in social connections determine the overall group structure and have consequences for a variety of processes, including if and when individuals acquire information from conspecifics. Effects in the opposite direction, where information acquisition and transmission have consequences for social connections, are also likely to be widespread. However, these effects are typically overlooked. We propose that individuals who successfully learn about their environment become valuable social partners and become highly connected, leading to feedback-based dynamic relationships between social connections and information transmission. These dynamics have the potential to change our understanding of social evolution, including how selection acts on behavior and how sociality influences population-level processes.


Asunto(s)
Aprendizaje , Conducta Social , Humanos
6.
Artículo en Inglés | MEDLINE | ID: mdl-30104437

RESUMEN

The requirements of living in social groups, and forming and maintaining social relationships are hypothesized to be one of the major drivers behind the evolution of cognitive abilities. Most empirical studies investigating the relationships between sociality and cognition compare cognitive performance between species living in systems that differ in social complexity. In this review, we ask whether and how individuals benefit from cognitive skills in their social interactions. Cognitive abilities, such as perception, attention, learning, memory, and inhibitory control, aid in forming and maintaining social relationships. We investigate whether there is evidence that individual variation in these abilities influences individual variation in social relationships. We then consider the evolutionary consequences of the interaction between sociality and cognitive ability to address whether bi-directional relationships exist between the two, such that cognition can both shape and be shaped by social interactions and the social environment. In doing so, we suggest that social network analysis is emerging as a powerful tool that can be used to test for directional causal relationships between sociality and cognition. Overall, our review highlights the importance of investigating individual variation in cognition to understand how it shapes the patterns of social relationships.This article is part of the theme issue 'Causes and consequences of individual differences in cognitive abilities'.


Asunto(s)
Conducta Animal , Cognición , Conducta Social , Animales , Variación Biológica Individual
7.
Curr Biol ; 28(8): 1306-1310.e2, 2018 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-29628372

RESUMEN

Strong relationships exist between social connections and information transmission [1-9], where individuals' network position plays a key role in whether or not they acquire novel information [2, 3, 5, 6]. The relationships between social connections and information acquisition may be bidirectional if learning novel information, in addition to being influenced by it, influences network position. Individuals who acquire information quickly and use it frequently may receive more affiliative behaviors [10, 11] and may thus have a central network position. However, the potential influence of learning on network centrality has not been theoretically or empirically addressed. To bridge this epistemic gap, we investigated whether ring-tailed lemurs' (Lemur catta) centrality in affiliation networks changed after they learned how to solve a novel foraging task. Lemurs who had frequently initiated interactions and approached conspecifics before the learning experiment were more likely to observe and learn the task solution. Comparing social networks before and after the learning experiment revealed that the frequently observed lemurs received more affiliative behaviors than they did before-they became more central after the experiment. This change persisted even after the task was removed and was not caused by the observed lemurs initiating more affiliative behaviors. Consequently, quantifying received and initiated interactions separately provides unique insights into the relationships between learning and centrality. While the factors that influence network position are not fully understood, our results suggest that individual differences in learning and becoming successful can play a major role in social centrality, especially when learning from others is advantageous.


Asunto(s)
Lemur/psicología , Conducta Social , Red Social , Animales , Conducta Animal/fisiología , Femenino , Conocimiento , Aprendizaje/fisiología , Masculino
8.
R Soc Open Sci ; 3(7): 160256, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27493780

RESUMEN

Animals are predicted to selectively observe and learn from the conspecifics with whom they share social connections. Yet, hardly anything is known about the role of different connections in observation and learning. To address the relationships between social connections, observation and learning, we investigated transmission of information in two raven (Corvus corax) groups. First, we quantified social connections in each group by constructing networks on affiliative interactions, aggressive interactions and proximity. We then seeded novel information by training one group member on a novel task and allowing others to observe. In each group, an observation network based on who observed whose task-solving behaviour was strongly correlated with networks based on affiliative interactions and proximity. Ravens with high social centrality (strength, eigenvector, information centrality) in the affiliative interaction network were also central in the observation network, possibly as a result of solving the task sooner. Network-based diffusion analysis revealed that the order that ravens first solved the task was best predicted by connections in the affiliative interaction network in a group of subadult ravens, and by social rank and kinship (which influenced affiliative interactions) in a group of juvenile ravens. Our results demonstrate that not all social connections are equally effective at predicting the patterns of selective observation and information transmission.

9.
Proc Biol Sci ; 281(1784): 20140071, 2014 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-24741013

RESUMEN

Individual recognition can be facilitated by creating representations of familiar individuals, whereby information from signals in multiple sensory modalities become linked. Many vertebrate species use auditory-visual matching to recognize familiar conspecifics and heterospecifics, but we currently do not know whether representations of familiar individuals incorporate information from other modalities. Ring-tailed lemurs (Lemur catta) are highly visual, but also communicate via scents and vocalizations. To investigate the role of olfactory signals in multisensory recognition, we tested whether lemurs can recognize familiar individuals through matching scents and vocalizations. We presented lemurs with female scents that were paired with the contact call either of the female whose scent was presented or of another familiar female from the same social group. When the scent and the vocalization came from the same individual versus from different individuals, females showed greater interest in the scents, and males showed greater interest in both the scents and the vocalizations, suggesting that lemurs can recognize familiar females via olfactory-auditory matching. Because identity signals in lemur scents and vocalizations are produced by different effectors and often encountered at different times (uncoupled in space and time), this matching suggests lemurs form multisensory representations through a newly recognized sensory integration underlying individual recognition.


Asunto(s)
Animales de Laboratorio/fisiología , Percepción Auditiva , Lemur/fisiología , Percepción Olfatoria , Reconocimiento en Psicología/fisiología , Animales , Femenino , Masculino
10.
Proc Biol Sci ; 275(1636): 797-802, 2008 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-18198150

RESUMEN

Multimodal signals are common in nature and have recently attracted considerable attention. Despite this interest, their function is not well understood. We test the hypothesis that multimodal signals improve decision making in receivers by influencing the speed and the accuracy of their decisions. We trained bumble-bees (Bombus impatiens) to discriminate between artificial flowers that differed either in one modality, visual (specifically, shape) or olfactory, or in two modalities, visual plus olfactory. Bees trained on multimodal flowers learned the rewarding flowers faster than those trained on flowers that differed only in the visual modality and, in extinction trials, visited the previously rewarded flowers at a higher rate than bees trained on unimodal flowers. Overall, bees showed a speed-accuracy trade-off; bees that made slower decisions achieved higher accuracy levels. Foraging on multimodal flowers did not affect the slope of the speed-accuracy relationship, but resulted in a higher intercept, indicating that multimodal signals were associated with consistently higher accuracy across range of decision speeds. Our results suggest that bees make more effective decisions when flowers signal in more than one modality, and confirm the importance of studying signal components together rather than separately.


Asunto(s)
Abejas/fisiología , Animales , Conducta Animal , Toma de Decisiones , Aprendizaje Discriminativo , Conducta Alimentaria , Flores , Odorantes , Polen , Visión Ocular
11.
J Anim Ecol ; 75(2): 466-75, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16637999

RESUMEN

1. The causes of lagged population and geographical range expansions after species introductions are poorly understood, and there are relatively few detailed case studies. 2. We document the 29-year history of population dynamics and structure for a population of Euphydryas gillettii Barnes that was introduced to the Colorado Rocky Mountains, USA in 1977. 3. The population size remained low (< 200 individuals) and confined to a single habitat patch (approximately 2.25 ha) to 1998. These values are similar to those of many other populations within the natural geographical range of the species. 4. However, by 2002 the population increased dramatically to > 3000 individuals and covered approximately 70 ha, nearly all to the south of the original site. The direction of population expansion was the same as that of predominant winds. 5. By 2004, the butterfly's local distribution had retracted mainly to three habitat patches. It thus exhibited a 'surge/contraction' form of population growth. Searches within 15 km of the original site yielded no other new populations. 6. In 2005, butterfly numbers crashed, but all three habitat patches remained occupied. The populations within each patch did not decrease in the same proportions, suggesting independent dynamics that are characteristic of metapopulations. 7. We postulate that this behaviour results, in this species, in establishment of satellite populations and, given appropriate habitat structure, may result in lagged or punctuated expansions of introduced populations.


Asunto(s)
Mariposas Diurnas/fisiología , Ecosistema , Animales , Mariposas Diurnas/crecimiento & desarrollo , Colorado , Femenino , Masculino , Densidad de Población , Dinámica Poblacional , Crecimiento Demográfico , Aislamiento Social
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...