Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cells ; 11(19)2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36231044

RESUMEN

Disruption of mitochondrial structure/function is well-recognized to be a determinant of cell death in cardiomyocytes subjected to lethal episodes of ischemia-reperfusion (IR). However, the precise mitochondrial event(s) that precipitate lethal IR injury remain incompletely resolved. Using the in vitro HL-1 cardiomyocyte model, our aims were to establish whether: (1) proteolytic processing of optic atrophy protein-1 (OPA1), the inner mitochondrial membrane protein responsible for maintaining cristae junction integrity, plays a causal, mechanistic role in determining cardiomyocyte fate in cells subjected to lethal IR injury; and (2) preservation of OPA1 may contribute to the well-documented cardioprotection achieved with ischemic preconditioning (IPC) and remote ischemic conditioning. We report that HL-1 cells subjected to 2.5 h of simulated ischemia displayed increased activity of OMA1 (the metalloprotease responsible for proteolytic processing of OPA1) during the initial 45 min following reoxygenation. This was accompanied by processing of mitochondrial OPA1 (i.e., cleavage to yield short-OPA1 peptides) and release of short-OPA1 into the cytosol. However, siRNA-mediated knockdown of OPA1 content did not exacerbate lethal IR injury, and did not attenuate the cardioprotection seen with IPC and a remote preconditioning stimulus, achieved by transfer of 'reperfusate' medium (TRM-IPC) in this cell culture model. Taken together, our results do not support the concept that maintenance of OPA1 integrity plays a mechanistic role in determining cell fate in the HL-1 cardiomyocyte model of lethal IR injury, or that preservation of OPA1 underlies the cardioprotection seen with ischemic conditioning.


Asunto(s)
Atrofia Óptica , Daño por Reperfusión , Muerte Celular , GTP Fosfohidrolasas/metabolismo , Humanos , Isquemia/metabolismo , Metaloproteasas/metabolismo , Miocitos Cardíacos/metabolismo , Atrofia Óptica/metabolismo , ARN Interferente Pequeño/metabolismo , Daño por Reperfusión/metabolismo
2.
Cells ; 9(1)2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31952189

RESUMEN

The current standard of care for acute myocardial infarction or 'heart attack' is timely restoration of blood flow to the ischemic region of the heart. While reperfusion is essential for the salvage of ischemic myocardium, re-introduction of blood flow paradoxically kills (rather than rescues) a population of previously ischemic cardiomyocytes-a phenomenon referred to as 'lethal myocardial ischemia-reperfusion (IR) injury'. There is long-standing and exhaustive evidence that mitochondria are at the nexus of lethal IR injury. However, during the past decade, the paradigm of mitochondria as mediators of IR-induced cardiomyocyte death has been expanded to include the highly orchestrated process of mitochondrial quality control. Our aims in this review are to: (1) briefly summarize the current understanding of the pathogenesis of IR injury, and (2) incorporating landmark data from a broad spectrum of models (including immortalized cells, primary cardiomyocytes and intact hearts), provide a critical discussion of the emerging concept that mitochondrial dynamics and mitophagy (the components of mitochondrial quality control) may contribute to the pathogenesis of cardiomyocyte death in the setting of ischemia-reperfusion.


Asunto(s)
Mitocondrias Cardíacas/metabolismo , Modelos Cardiovasculares , Daño por Reperfusión/patología , Animales , Encéfalo/patología , Humanos , Dinámicas Mitocondriales , Miocitos Cardíacos/patología
3.
Neuroimage Clin ; 12: 100-115, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27408795

RESUMEN

Mild traumatic brain injury (mTBI) accounts for over one million emergency visits each year in the United States. The large-scale structural and functional network connectivity changes of mTBI are still unknown. This study was designed to determine the connectome-scale brain network connectivity changes in mTBI at both structural and functional levels. 40 mTBI patients at the acute stage and 50 healthy controls were recruited. A novel approach called Dense Individualized and Common Connectivity-based Cortical Landmarks (DICCCOLs) was applied for connectome-scale analysis of both diffusion tensor imaging and resting state functional MRI data. Among 358 networks identified on DICCCOL analysis, 41 networks were identified as structurally discrepant between patient and control groups. The involved major white matter tracts include the corpus callosum, and superior and inferior longitudinal fasciculi. Functional connectivity analysis identified 60 connectomic signatures that differentiate patients from controls with 93.75% sensitivity and 100% specificity. Analysis of functional domains showed decreased intra-network connectivity within the emotion network and among emotion-cognition interactions, and increased interactions among action-emotion and action-cognition as well as within perception networks. This work suggests that mTBI may result in changes of structural and functional connectivity on a connectome scale at the acute stage.

4.
Am J Emerg Med ; 33(4): 493-6, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25727167

RESUMEN

STUDY OBJECTIVE: We compared the performance of a handheld quantitative electroencephalogram (QEEG) acquisition device to New Orleans Criteria (NOC), Canadian CT Head Rule (CCHR), and National Emergency X-Radiography Utilization Study II (NEXUS II) Rule in predicting intracranial lesions on head computed tomography (CT) in acute mild traumatic brain injury in the emergency department (ED). METHODS: Patients between 18 and 80 years of age who presented to the ED with acute blunt head trauma were enrolled in this prospective observational study at 2 urban academic EDs in Detroit, MI. Data were collected for 10 minutes from frontal leads to determine a QEEG discriminant score that could maximally classify intracranial lesions on head CT. RESULTS: One hundred fifty-two patients were enrolled from July 2012 to February 2013. A total 17.1% had acute traumatic intracranial lesions on head CT. Quantitative electroencephalogram discriminant score of greater than or equal to 31 was found to be a good cutoff (area under receiver operating characteristic curve = 0.84; 95% confidence interval [CI], 0.76-0.93) to classify patients with positive head CT. The sensitivity of QEEG discriminant score was 92.3 (95% CI, 73.4-98.6), whereas the specificity was 57.1 (95% CI, 48.0-65.8). The sensitivity and specificity of the decision rules were as follows: NOC 96.1 (95% CI, 78.4-99.7) and 15.8 (95% CI, 10.1-23.6); CCHR 46.1 (95% CI, 27.1-66.2) and 86.5 (95% CI, 78.9-91.7); NEXUS II 96.1 (95% CI, 78.4-99.7) and 31.7 (95% CI, 23.9-40.7). CONCLUSION: At a sensitivity of greater than 90%, QEEG discriminant score had better specificity than NOC and NEXUS II. Only CCHR had better specificity than QEEG discriminant score but at the cost of low (<50%) sensitivity.


Asunto(s)
Lesiones Encefálicas/diagnóstico por imagen , Técnicas de Apoyo para la Decisión , Electroencefalografía , Servicio de Urgencia en Hospital , Tomografía Computarizada por Rayos X/estadística & datos numéricos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Sensibilidad y Especificidad
5.
J Neurotrauma ; 32(14): 1031-45, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25285363

RESUMEN

Mild traumatic brain injury (mTBI) accounts for more than 1 million emergency visits each year. Most of the injured stay in the emergency department for a few hours and are discharged home without a specific follow-up plan because of their negative clinical structural imaging. Advanced magnetic resonance imaging (MRI), particularly functional MRI (fMRI), has been reported as being sensitive to functional disturbances after brain injury. In this study, a cohort of 12 patients with mTBI were prospectively recruited from the emergency department of our local Level-1 trauma center for an advanced MRI scan at the acute stage. Sixteen age- and sex-matched controls were also recruited for comparison. Both group-based and individual-based independent component analysis of resting-state fMRI (rsfMRI) demonstrated reduced functional connectivity in both posterior cingulate cortex (PCC) and precuneus regions in comparison with controls, which is part of the default mode network (DMN). Further seed-based analysis confirmed reduced functional connectivity in these two regions and also demonstrated increased connectivity between these regions and other regions of the brain in mTBI. Seed-based analysis using the thalamus, hippocampus, and amygdala regions further demonstrated increased functional connectivity between these regions and other regions of the brain, particularly in the frontal lobe, in mTBI. Our data demonstrate alterations of multiple brain networks at the resting state, particularly increased functional connectivity in the frontal lobe, in response to brain concussion at the acute stage. Resting-state functional connectivity of the DMN could serve as a potential biomarker for improved detection of mTBI in the acute setting.


Asunto(s)
Conmoción Encefálica/fisiopatología , Lesiones Encefálicas/fisiopatología , Encéfalo/fisiopatología , Red Nerviosa/fisiopatología , Adulto , Anciano , Mapeo Encefálico , Femenino , Neuroimagen Funcional , Humanos , Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Adulto Joven
6.
Chem Biol Drug Des ; 84(5): 603-15, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24797889

RESUMEN

In this study, we report the identification of a new shikonin-phenoxyacetic acid derivative, as an inhibitor of tubulin. A series of compounds were prepared; among them, compound 16 [(R)-1-(5,8-dihydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)-4-methylpent-3-enyl 2-(4- phenoxyphenyl) acetate] potently inhibited the function of microtubules, inducing cell growth inhibition, apoptosis of cancer cell lines in a concentration and time-dependent manner. Molecular docking involving 16 at the vinblastine binding site of tubulin indicated that a phenoxy moiety interacted with tubulin via hydrogen bonding with asparaginate (Asn) and tyrosine (Tyr). Analysis of microtubules with confocal microscopy demonstrated that 16 altered the microtubule architecture and exhibited a significant reduction in microtubule density. Cell cycle assay further proved that HepG2 cells were blocked in G2/M phase. Our study provides a new, promising compound for the development of tubulin inhibitors by proposing a new target for the anticancer activity of shikonin.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Naftoquinonas/química , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacología , Tubulina (Proteína)/metabolismo , Antineoplásicos/síntesis química , Apoptosis/efectos de los fármacos , Sitios de Unión , Relación Dosis-Respuesta a Droga , Células Hep G2/efectos de los fármacos , Humanos , Enlace de Hidrógeno , Microtúbulos/efectos de los fármacos , Simulación del Acoplamiento Molecular , Terapia Molecular Dirigida , Vinblastina/metabolismo
7.
PLoS One ; 8(11): e80296, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24260364

RESUMEN

BACKGROUND: Mild traumatic brain injury (mTBI) is a significant healthcare burden and its diagnosis remains a challenge in the emergency department. Serum biomarkers and advanced magnetic resonance imaging (MRI) techniques have already demonstrated their potential to improve the detection of brain injury even in patients with negative computed tomography (CT) findings. The objective of this study was to determine the clinical value of a combinational use of both blood biomarkers and MRI in mTBI detection and their characterization in the acute setting (within 24 hours after injury). METHODS: Nine patients with mTBI were prospectively recruited from the emergency department. Serum samples were collected at the time of hospital admission and every 6 hours up to 24 hours post injury. Neuronal (Ubiquitin C-terminal Hydrolase-L1 [UCH-L1]) and glial (glial fibrillary acidic protein [GFAP]) biomarker levels were analyzed. Advanced MRI data were acquired at 9 ± 6.91 hours after injury. Patients' neurocognitive status was assessed by using the Standard Assessment of Concussion (SAC) instrument. RESULTS: The median serum levels of UCH-L1 and GFAP on admission were increased 4.9 folds and 10.6 folds, respectively, compared to reference values. Three patients were found to have intracranial hemorrhages on SWI, all of whom had very high GFAP levels. Total volume of brain white matter (WM) with abnormal fractional anisotropy (FA) measures of diffusion tensor imaging (DTI) were negatively correlated with patients' SAC scores, including delayed recall. Both increased and decreased DTI-FA values were observed in the same subjects. Serum biomarker level was not correlated with patients' DTI data nor SAC score. CONCLUSIONS: Blood biomarkers and advanced MRI may correlate or complement each other in different aspects of mTBI detection and characterization. GFAP might have potential to serve as a clinical screening tool for intracranial bleeding. UCH-L1 complements MRI in injury detection. Impairment at WM tracts may account for the patients' neurocognitive symptoms.


Asunto(s)
Biomarcadores/sangre , Lesiones Encefálicas/sangre , Lesiones Encefálicas/diagnóstico , Adulto , Anisotropía , Encéfalo/patología , Lesiones Encefálicas/patología , Cognición/fisiología , Imagen de Difusión Tensora/métodos , Femenino , Humanos , Hemorragias Intracraneales/sangre , Hemorragias Intracraneales/patología , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Proteínas del Tejido Nervioso/sangre , Proyectos Piloto , Ubiquitina Tiolesterasa/sangre , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...