Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(30): 39642-39655, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39013073

RESUMEN

Considering the low-level dose detection requirement for neutron and γ radiation in cancer therapy, synthesis and exploratory studies have been performed on a newly developed phosphor LiAlO2:Gd. Our results reveal that the presence of both Li and Gd makes it sensitive to both gamma and thermal neutrons. The applicability of LiAlO2:Gd for beta, gamma, and neutrons in both thermally stimulated and optically stimulated modes has been verified by extensive experiments followed by kinetic parametric evaluation with theoretical calculations. The current work confirms that LiAlO2:Gd is a highly sensitive phosphor with a minimum detectable dose of 5.7 µSv for gamma and 92 µSv for themral neutrons. The phosphor is found to show very high sensitivity at low energy and dose. Its ability for detection and discrimination of both gamma and thermal neutrons makes it a potential material to be used in medical dosimetry.

2.
Environ Sci Pollut Res Int ; 31(17): 24951-24960, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460038

RESUMEN

Solid process fine waste or tailings of a uranium mill is a potential source of release of radiologically significant gaseous radon (222Rn). A number of variables such as radium (226Ra) content, porosity, moisture content, and tailings density can affect the extent of emanation from the tailings. Further, if a cover material is used for remediation purposes, additional challenges due to changes in the matrix characteristics in predicting the radon flux can be anticipated. The uranium mill tailings impoundment systems at Jaduguda have been in use for the long-term storage of fine process waste (tailings). A pilot-scale remediation exercise of one of the tailings ponds has been undertaken with 30 cm soil as a cover material. For the prediction of the radon flux, a numerical model has been developed to account for the radon exhalation process at the remediated site. The model can effectively be used to accommodate both the continuous and discrete variable inputs. Depth profiling and physicochemical characterization for the remediated site have been done for the required input variables of the proposed numerical model. The predicted flux worked out is well below the reference level of 0.74 Bq m-2 s-1 IAEA (2004).


Asunto(s)
Radio (Elemento) , Radón , Contaminantes Radiactivos del Suelo , Uranio , Radón/análisis , Contaminantes Radiactivos del Suelo/análisis , India , Residuos Sólidos
3.
J Comput Chem ; 41(15): 1427-1435, 2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32125003

RESUMEN

A relativistic density functional theory (DFT) study is reported which aims to understand the complexation chemistry of An4+ ions (An = Th, U, Np, and Pu) with a potential decorporation agent, 5-LIO(Me-3,2-HOPO). The calculations show that the periodic change of the metal binding free energy has an excellent correlation with the ionic radii and such change of ionic radii also leads to the structural modulation of actinide-ligand complexes. The calculated structural and binding parameters agree well with the available experimental data. Atomic charges derived from quantum theory of atoms in molecules (QTAIM) and natural bond order (NBO) analysis shows the major role of ligand-to-metal charge transfer in the stability of the complexes. Energy decomposition analysis, QTAIM, and electron localization function (ELF) predict that the actinide-ligand bond is dominantly ionic, but the contribution of orbital interaction is considerable and increases from Th4+ to Pu4+ . A decomposition of orbital contributions applying the extended transition state-natural orbital chemical valence method points out the significant π-donation from the oxygen donor centers to the electron-poor actinide ion. Molecular orbital analysis suggests an increasing trend of orbital mixing in the context of 5f orbital participation across the tetravalent An series (Th-Pu). However, the corresponding overlap integral is found to be smaller than in the case of 6d orbital participation. An analysis of the results from the aforementioned electronic structure methods indicates that such orbital participation possibly arises due to the energy matching of ligand and metal orbitals and carries the signature of near-degeneracy driven covalency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...