Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.174
Filtrar
1.
ACS Omega ; 9(31): 33723-33734, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39130573

RESUMEN

In this study, we systematically investigate the piezoelectric, thermoelectric, and photocatalytic properties of novel two-dimensional Janus arsenic chalcohalide monolayers, AsXX' (X = S and Se and X' = Cl, Br, and I) using density functional theory. The positive phonon spectra and ab initio molecular dynamics simulation plots indicate these monolayers to be dynamically and thermally stable. The mechanical stability of these monolayers is confirmed by a nonzero elastic constant (C ij ), Young's modulus (Y 2D), and Poisson ratio (ν). These monolayers exhibit strong out-of-plane piezoelectric coefficients, making them candidate materials for piezoelectric devices. Our calculated results indicate that these monolayers have a low lattice thermal conductivity (κl) and high thermoelectric figure of merit (zT) up to 1.51 at 800 K. These monolayers have an indirect bandgap, high carrier mobility, and strong visible light absorption spectra. Furthermore, the AsSCl, AsSBr, and AsSeI monolayers exhibit appropriate band alignment for water splitting. The calculated value of the corrected solar-to-hydrogen conversion efficiency can reach up to 19%. The nonadiabatic molecular dynamics simulations reveal the prolonged electron-hole recombination rates of 1.52 0.98, and 0.67 ns for AsSCl, AsSBr, and AsSeI monolayers, respectively. Our findings demonstrate these monolayers to be potential candidates in energy-harvesting fields.

2.
Noncoding RNA Res ; 9(4): 1333-1341, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39131689

RESUMEN

The disease burden of Oral Squamous Cell Carcinoma (OSCC) is rising day-by-day and is expected to rise 62 % through 2035. The chewing of tobacco, areca nut, and betel leaf, poor oral hygiene, and chronic infection are common risk factors of OSCC, but genetic and epigenetic factors also contribute equally. MicroRNAs (miRNAs) are comprised of small, non-coding endogenous RNA that regulate a plethora of biological activities by targeting messenger RNA through degradation or inhibition. Single Nucleotide Polymorphisms (SNPs) in miRNA genes can regulate the development and progression of OSCC. The present study aimed to determine the association between SNPs in miRNA genes (miRSNPs) with the risk of OSCC. A case-control study involving 225 histo-pathologically confirmed OSCC cases and 225 healthy controls was conducted, where 25 miRSNPs were analyzed by iPLEX MassArray analysis. A SNP rs12220909 in MIR4293 showed a highly protective effect (CC vs GG, OR = 0.0431, 95%CI = 0.005-0.323, p = 3e-6). Whereas three SNPs, namely, rs4705342 in MIR143 (CC vs TT, OR = 2.25, 95%CI = 2.00-2.53, p = 0.0008), rs531564 in MIR124 (CC vs GG, OR = 24.18, 95%CI = 3.22-181.37, p = 3e-6), and rs3746444 in MIR499 (AA vs GG, OR = 2.01, 95%CI = 1.32-3.05, p = 0.001) were significantly associated with a higher risk of OSCC. Additionally, NanoString-based nCounter miRNA expression profiling revealed that miR-499a (Log2FC = -1.07), and miR-143 (Log2FC = -1.56) were aberrantly expressed in OSCC tissue. Taken together, the above miSNPs may contribute to the high incidence of OSCC in central India. However, further studies with large cohorts and ethnic stratification are required to validate our findings.

3.
Oman J Ophthalmol ; 17(2): 261-263, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39132098

RESUMEN

Nocardia keratitis is mostly seen in patients with alcoholism, malnutrition, or HIV. Its chronic waxing-and-waning course makes it difficult to diagnose. A 53-year-old male presented with pain and redness in his right eye for the past 3 weeks. The cornea had paracentral ulcer with stromal infiltrates and multiple satellite lesions giving wreath-like appearance suggestive of Nocardia. After corneal scraping, fortified amikacin, moxifloxacin, and cycloplegics were started. Gram stain revealed filamentous, branching Gram-positive bacteria and acid-fast on Ziehl-Neelsen stain confirming our clinical diagnosis. Ulcer completely resolved over 6 weeks. Thus, a high index of clinical suspicion which was further backed by microbiological confirmation aided in expedient management ensuring a successful outcome.

5.
J Mater Chem B ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101879

RESUMEN

Wound healing represents a complex biological process crucial for tissue repair and regeneration. In recent years, biomaterial-based scaffolds loaded with bioactive compounds have emerged as promising therapeutic strategies to accelerate wound healing. In this study, we investigated the properties and wound healing effects of cryogels loaded with calcium peroxide (CP) and berberine (BB). The cryogels were synthesized through a cryogenic freezing technique and displayed pore diameters of 83 ± 39 µm, with porosity exceeding 90%. Following 20 days of degradation, the percentage of remaining weight for GPC and GPC-CP-BB cryogels was determined to be 12.42 ± 2.45% and 10.78 ± 2.08%, respectively. Moreover, the swelling ratios after 3 minutes for GPC and GPC-CP-BB were found to be 22.10 ± 0.05 and 21.00 ± 0.07, respectively. In vitro investigations demonstrated the cytocompatibility of the cryogels, with sufficient adhesion and proliferation of fibroblast (NIH-3T3) cells observed on the scaffolds, along with their hemocompatibility. Furthermore, the cryogels exhibited sustained release kinetics of both calcium peroxide and berberine, ensuring prolonged therapeutic effects at the wound site. In vivo assessment using a rat model of full-thickness skin wounds demonstrated accelerated wound closure rates in animals treated with the GPC-CP-BB scaffold compared to controls. Histological analysis revealed enhanced granulation tissue formation, re-epithelialization, and collagen deposition in the GPC-CP-BB group. Overall, our findings suggest that the scaffold loaded with CP and BB holds great promise as a therapeutic approach for promoting wound healing. Its multifaceted properties offer a multifunctional platform for localized delivery of therapeutic agents while providing mechanical support and maintaining a favorable microenvironment for tissue regeneration.

6.
BMC Genomics ; 25(1): 760, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103778

RESUMEN

BACKGROUND: In the face of contemporary climatic vulnerabilities and escalating global temperatures, the prevalence of maydis leaf blight (MLB) poses a potential threat to maize production. This study endeavours to discern marker-trait associations and elucidate the candidate genes that underlie resistance to MLB in maize by employing a diverse panel comprising 336 lines. The panel was screening for MLB across four environments, employing standard artificial inoculation techniques. Genome-wide association studies (GWAS) and haplotype analysis were conducted utilizing a total of 128,490 SNPs obtained from genotyping-by-sequencing (GBS). RESULTS: GWAS identified 26 highly significant SNPs associated with MLB resistance, among the markers examined. Seven of these SNPs, reported in novel chromosomal bins (9.06, 5.01, 9.01, 7.04, 4.06, 1.04, and 6.05) were associated with genes: bzip23, NAGS1, CDPK7, aspartic proteinase NEP-2, VQ4, and Wun1, which were characterized for their roles in diminishing fungal activity, fortifying defence mechanisms against necrotrophic pathogens, modulating phyto-hormone signalling, and orchestrating oxidative burst responses. Gene mining approach identified 22 potential candidate genes associated with SNPs due to their functional relevance to resistance against necrotrophic pathogens. Notably, bin 8.06, which hosts five SNPs, showed a connection to defense-regulating genes against MLB, indicating the potential formation of a functional gene cluster that triggers a cascade of reactions against MLB. In silico studies revealed gene expression levels exceeding ten fragments per kilobase million (FPKM) for most genes and demonstrated coexpression among all candidate genes in the coexpression network. Haplotype regression analysis revealed the association of 13 common significant haplotypes at Bonferroni ≤ 0.05. The phenotypic variance explained by these significant haplotypes ranged from low to moderate, suggesting a breeding strategy that combines multiple resistance alleles to enhance resistance to MLB. Additionally, one particular haplotype block (Hap_8.3) was found to consist of two SNPs (S8_152715134, S8_152460815) identified in GWAS with 9.45% variation explained (PVE). CONCLUSION: The identified SNPs/ haplotypes associated with the trait of interest contribute to the enrichment of allelic diversity and hold direct applicability in Genomics Assisted Breeding for enhancing MLB resistance in maize.


Asunto(s)
Resistencia a la Enfermedad , Estudio de Asociación del Genoma Completo , Enfermedades de las Plantas , Polimorfismo de Nucleótido Simple , Zea mays , Zea mays/genética , Zea mays/microbiología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , India , Haplotipos , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Sitios de Carácter Cuantitativo , Fenotipo
7.
Clin Case Rep ; 12(8): e9284, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39156201

RESUMEN

Key Clinical Message: This is a challenging case where the surgeon has initially thought it is a gallbladder (GB) mucocele. The surprise finding of a mucocele during an emergency laparotomy highlights the deceptive nature of certain clinical manifestations within the hepatobiliary domain. The intraoperative discovery of a 1×1 cm GB hole on the right lateral wall of the GB fundus revealed an unexpected and significant deviation from the hypothesized pathogenesis. Abstract: This case report provides a complicated diagnosis scenario for a hepatobiliary illness aggravated by schizophrenia. Arriving with frequent nausea and vomiting, a 70-year-old female patient with schizophrenia missed typical symptoms of gallbladder (GB) disease, including fever and stomach discomfort. This odd look and corroborative imaging showing a cystic lesion in the right belly led to a diagnostic suspicion of a sizable GB mucocele. But a surprising result from an emergency laparotomy revealed a significant GB perforation, different from the previous diagnosis. This case highlights the difficulties in identifying atypical GB diseases, particularly in individuals with mental comorbidities that could conceal or alter the expression of physical symptoms. To confirm or rule out differential diagnosis and allow early and tailored treatments, it emphasizes the need for thorough diagnostic tests, including a complete clinical history, physical examinations, laboratory analysis, imaging modalities, and surgical procedures. This case emphasizes the importance of careful examination in complex medical contexts by stressing the requirement of thorough assessments and comprehensive diagnostic frameworks in navigating challenging clinical situations.

8.
Indian J Nephrol ; 34(4): 350-356, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39156839

RESUMEN

Background: Chronic kidney disease (CKD) patients on hemodialysis face issues like poor quality of sleep and reduced physical activity, which can impair their quality of life. This study aimed to assess the physical activity and quality of sleep among CKD patients on hemodialysis. Materials and Methods: This cross-sectional study was conducted at All India Institute of Medical Sciences (AIIMS), Jodhpur. Data from 66 participants selected consecutively using self-reported standardized tools, namely, Global Physical Activity Questionnaire (GPAQ) and Pittsburgh Sleep Quality Index (PSQI), were collected, along with sociodemographic variables. After receiving written informed consent, questionnaires were administered through face-to-face interviews. Results: The majority of the individuals, 45 (68.2%), were found to be physically active with a mean score of 2280.8 metabolic equivalents (MET)-min/week. The average PSQI score was 9.24 ± 4, and 49 (74.2%) participants had a PSQI score as higher than 5, suggesting poor quality of sleep. Physical activity and quality of sleep were found to have a significant relationship (P = 0.03). Physical activity was found to have a significant relationship with age (P = 0.01), whereas quality of sleep was associated with smoking status (P = 0.04), alcohol consumption (P < 0.01), and body mass index (BMI; P = 0.03). Conclusion: Contrary to many studies where CKD patients on hemodialysis were found to be physically inactive, the present study showed a substantial portion of them to be physically active. Poor quality of sleep was common; hence, interventions to promote sleep quality recommended.

9.
Int J Biol Macromol ; 278(Pt 1): 134402, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39094885

RESUMEN

3D printed scaffolds have revolutionized the field of regenerative medicine by overcoming the lacunas such as precision, customization, and reproducibility observed through traditional methods of scaffold preparation such as freeze-drying, electrospinning, etc. Combining the advantages of 3D printed scaffolds along with bioactive cues such as signaling molecules can be an effective treatment approach. In the present study, cellulose nanocrystals (CNCs) along with gelatin, in different ratios, were used for scaffold preparation through the direct ink writing technique and thoroughly characterized. The scaffolds showed porous microstructure, high swelling ratio (∼390 to 590), degradability and porosity (∼65 %). In vitro biocompatibility assays showed high biocompatibility and no toxicity through live-dead, proliferation and hemolysis assay. Further, the optimum formulation was functionalized with nitric oxide (NO)-releasing modified gelatin to enhance the scaffold's biomedical applicability. Functionality assays with this formulation, scratch, and neurite outgrowth showed positive effects of NO on cell migration and neurite length. The study presents the fabrication, modification, and biomedical applicability of the aforementioned inks, which paves new pathways in the field of 3D printing of scaffolds with significant potential for biomedical applications, soft tissue engineering, and wound dressing, for example.

10.
Inorg Chem ; 63(29): 13724-13737, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38970493

RESUMEN

The structure-property relationship considering isomerism-tuned photoluminescence and efficient catalytic activity of silver nanoclusters (NCs) is exclusive. Asymmetrical dithiophosphonate NH4[S2P(OR)(p-C6H4OCH3)] ligated first atomically precise silver NCs [Ag21{S2P(OR)(p-C6H4OCH3)}12]PF6 {where, R = nPr (1), Et (2)} were established by single-crystal X-ray diffraction and characterized by electrospray ionization mass spectrometry, NMR (31P, 1H, 2H), X-ray photoelectron spectroscopy, UV-visible, energy-dispersive X-ray spectroscopy, Fourier transforms infrared, thermogravimetric analysis, etc. NCs 1 and 2 consist of eight silver atoms in a cubic framework and enclose an Ag@Ag12-centered icosahedron to constitute an Ag21 core of Th symmetry, which is concentrically inscribed within the S24 snub-cube, P12 cuboctahedron, and the O12 truncated tetrahedron formed by 12 dithiophosphonate ligands. These NCs facilitate to be an eight-electron superatom (1S21P6), in which eight capping Ag atoms exhibit structural isomerism with documented isoelectronic [Ag21{S2P(OiPr)2}12]PF6, 3. In contrast to 3, the stapling of dithiophosphonates in 1 and 2 triggered bluish emission within the 400 to 500 nm region at room temperature. The density functional theory study rationalized isomerization and optical properties of 1, 2, and 3. Both (1, and 2) clusters catalyzed a decarboxylative acylarylation reaction for rapid oxindole synthesis in 99% yield under ambient conditions and proposed a multistep reaction pathway. Ultimately, this study links nanostructures to their physical and catalytic properties.

11.
Microbiol Res ; 286: 127827, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39002396

RESUMEN

Drought is a major stressor that poses significant challenges for agricultural practices. It becomes difficult to meet the global demand for food crops and fodder. Plant physiology, physico-chemistry and morphology changes in plants like decreased photosynthesis and transpiration rate, overproduction of reactive oxygen species, repressed shoot and root shoot growth and modified stress signalling pathways by drought, lead to detrimental impacts on plant development and output. Coping with drought stress requires a variety of adaptations and mitigation techniques. Crop yields could be effectively increased by employing plant growth-promoting rhizobacteria (PGPR), which operate through many mechanisms. These vital microbes colonise the rhizosphere of crops and promote drought resistance by producing exopolysaccharides (EPS), 1-aminocyclopropane-1-carboxylate (ACC) deaminase and phytohormones including volatile compounds. The upregulation or downregulation of stress-responsive genes causes changes in root architecture due to acquiring drought resistance. Further, PGPR induces osmolyte and antioxidant accumulation. Another key feature of microbial communities associated with crops includes induced systemic tolerance and the production of free radical-scavenging enzymes. This review is focused on detailing the role of PGPR in assisting plants to adapt to drought stress.


Asunto(s)
Agricultura , Productos Agrícolas , Sequías , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas , Raíces de Plantas , Rizosfera , Microbiología del Suelo , Estrés Fisiológico , Productos Agrícolas/microbiología , Productos Agrícolas/crecimiento & desarrollo , Agricultura/métodos , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Bacterias/genética , Bacterias/metabolismo , Liasas de Carbono-Carbono/metabolismo , Liasas de Carbono-Carbono/genética
13.
Elife ; 122024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023518

RESUMEN

In a variety of species and behavioral contexts, learning and memory formation recruits two neural systems, with initial plasticity in one system being consolidated into the other over time. Moreover, consolidation is known to be selective; that is, some experiences are more likely to be consolidated into long-term memory than others. Here, we propose and analyze a model that captures common computational principles underlying such phenomena. The key component of this model is a mechanism by which a long-term learning and memory system prioritizes the storage of synaptic changes that are consistent with prior updates to the short-term system. This mechanism, which we refer to as recall-gated consolidation, has the effect of shielding long-term memory from spurious synaptic changes, enabling it to focus on reliable signals in the environment. We describe neural circuit implementations of this model for different types of learning problems, including supervised learning, reinforcement learning, and autoassociative memory storage. These implementations involve synaptic plasticity rules modulated by factors such as prediction accuracy, decision confidence, or familiarity. We then develop an analytical theory of the learning and memory performance of the model, in comparison to alternatives relying only on synapse-local consolidation mechanisms. We find that recall-gated consolidation provides significant advantages, substantially amplifying the signal-to-noise ratio with which memories can be stored in noisy environments. We show that recall-gated consolidation gives rise to a number of phenomena that are present in behavioral learning paradigms, including spaced learning effects, task-dependent rates of consolidation, and differing neural representations in short- and long-term pathways.


Asunto(s)
Recuerdo Mental , Plasticidad Neuronal , Plasticidad Neuronal/fisiología , Recuerdo Mental/fisiología , Aprendizaje/fisiología , Modelos Neurológicos , Consolidación de la Memoria/fisiología , Humanos , Animales , Memoria/fisiología , Memoria a Largo Plazo/fisiología
15.
J Cancer ; 15(14): 4717-4730, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006085

RESUMEN

Background: Luteolin (LUT) is a bioactive compound with several pharmacological activities including anticancer effect. Doxorubicin (DOX) is an anthracycline chemotherapeutic drug that have proven to be effective in treating various types of cancers. Polymeric micelles (PMs) containing biologically active materials have emerged as prospective dosage forms with high drug-loading, which can add therapeutic benefit to the poorly water-soluble compounds and novel chemical entities. PMs are effective in delivering several drugs, such as anticancer drugs, antifungal drugs, flavonoids and drugs targeting the brain. The aim of the current study is to develop PMs for LUT and DOX as a combined delivery system for cancer therapy. Methods: PMs were prepared using 2.5% of each of LUT and DOX with varying compositions of Poloxamer 188, Poloxamer 407, Vitamin E (TPGS), Poloxamer 123 and Gellucire 44/14 at room temperature. Particle size, polydispersity index, zeta potential, were achieved using Zetasizer Nano particle size analyzer and the sizes were further confirmed with transmission electron microscopy (TEM). Prepared PMs were further characterized using powder X-ray diffraction (PXRD) and fourier transform infrared spectroscopy (FTIR). An MTT assay was performed on breast cancer (MCF-7) cells and liver cancer (HepG2) cells to determine the cytotoxic effect of the different PMs formulations. Results: PMs were successfully developed and optimized using 74.3% Poloxamer 407 with 20.7% Vitamin E (TPGS), and 70% Poloxamer 407 with 25% Gellucire 44/14, respectively. The droplet size and polydispersity index were found to be 62.03 ± 3.99 nm, 91.96 ± 5.80 nm and 0.33 ± 0.05, 0.59± 0.03, respectively for PMs containing TPGS and Gellucire 44/14. Zeta potentials of the PMs containing TPGS and Gellucire 44/14 were recorded as -2.27 ±0.11mV and -7.78 ± 0.10 mV, respectively. The PMs showed a spherical structure with approximately 50-90 nm range evident by TEM analysis. The PXRD spectra of PMs powder presented the amorphization of LUT and DOX. The FTIR spectra of LUT-loaded and DOX-loaded PMs were identical, suggesting consistent PMs composition. The MTT assay showed that the representative combined drug loaded PMs treatment led to a reduction in the viability of MCF-7 and HepG2 cells compared to drug free PMs and pure LUT, DOX alone. Conclusions: PMs with LUT and DOX exhibited significant cytotoxic effects against breast and liver cancer cells and could thus be an important new pharmaceutical formulation to treat cancer.

16.
Nat Commun ; 15(1): 5698, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38972924

RESUMEN

The arthropod mushroom body is well-studied as an expansion layer representing olfactory stimuli and linking them to contingent events. However, 8% of mushroom body Kenyon cells in Drosophila melanogaster receive predominantly visual input, and their function remains unclear. Here, we identify inputs to visual Kenyon cells using the FlyWire adult whole-brain connectome. Input repertoires are similar across hemispheres and connectomes with certain inputs highly overrepresented. Many visual neurons presynaptic to Kenyon cells have large receptive fields, while interneuron inputs receive spatially restricted signals that may be tuned to specific visual features. Individual visual Kenyon cells randomly sample sparse inputs from combinations of visual channels, including multiple optic lobe neuropils. These connectivity patterns suggest that visual coding in the mushroom body, like olfactory coding, is sparse, distributed, and combinatorial. However, the specific input repertoire to the smaller population of visual Kenyon cells suggests a constrained encoding of visual stimuli.


Asunto(s)
Conectoma , Drosophila melanogaster , Cuerpos Pedunculados , Vías Visuales , Animales , Cuerpos Pedunculados/fisiología , Cuerpos Pedunculados/citología , Drosophila melanogaster/fisiología , Vías Visuales/fisiología , Neuronas/fisiología , Interneuronas/fisiología , Lóbulo Óptico de Animales no Mamíferos/citología , Lóbulo Óptico de Animales no Mamíferos/fisiología , Neurópilo/fisiología , Neurópilo/citología
17.
Biomater Adv ; 163: 213937, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38968788

RESUMEN

PURPOSE: In chronic hyperglycemia, the advanced glycation end product (AGE) interacts with its receptor (RAGE) and contributes to impaired wound healing by inducing oxidative stress, generating dysfunctional macrophages, and prolonging the inflammatory response. Additionally, uncontrolled levels of proteases, including metallomatrix protease-9 (MMP-9), in the diabetic wound bed degrade the extracellular matrix (ECM) and biological cues that augment healing. A multifunctional antimicrobial hydrogel (Immuno-gel) containing RAGE and MMP-9 inhibitors can regulate the wound microenvironment and promote scar-free healing. RESULTS: Immuno-gel was characterized and the wound healing efficacy was determined in vitro cell culture and in vivo diabetic Wistar rat wound model using ELISA, Western blot, and Immunofluorescence staining. The Immuno-gel exhibited a highly porous morphology with excellent in vitro cytocompatibility. AGE-stimulated macrophages treated with the Immuno-gel released higher levels of pro-healing cytokines in vitro. In the hydrogel-wound interface of diabetic Wistar rats, Immuno-gel treatment significantly reduced MMP-9 and NF-κB expression and enhanced pro-healing (M2) macrophage population and pro-healing cytokines. CONCLUSION: Altogether, this study suggests that Immuno-gel simultaneously attenuates macrophage dysfunction through the inhibition of AGE/RAGE signaling and reduces MMP-9 overexpression, both of which favor scar-free healing. The combinatorial treatment with RAGE and MMP-9 inhibitors via Immuno-gel simultaneously modulates the diabetic wound microenvironment, making it a promising novel treatment to accelerate diabetic wound healing.


Asunto(s)
Diabetes Mellitus Experimental , Productos Finales de Glicación Avanzada , Hidrogeles , Metaloproteinasa 9 de la Matriz , Ratas Wistar , Receptor para Productos Finales de Glicación Avanzada , Transducción de Señal , Cicatrización de Heridas , Animales , Metaloproteinasa 9 de la Matriz/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Cicatrización de Heridas/efectos de los fármacos , Hidrogeles/farmacología , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Ratas , Transducción de Señal/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/inmunología , Masculino , Ratones
18.
Nanoscale ; 16(30): 14418-14432, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39012299

RESUMEN

Incredibly effective and flexible energy conversion and storage systems hold great promise for portable self-powered electronic devices. Owing to their large surface area, exceptional atomic structures, superior electrical conductivity and good mechanical flexibility, two-dimensional (2D) materials are recognized as an attractive option for energy conversion and storage application. In this work, we examined the stability, electronic, thermoelectric and electrochemical aspects of a novel 2D Be2P4 monolayer by adopting density functional theory (DFT). The Be2P4 monolayer exhibits a direct semiconductor gap of 0.9 eV (HSE06), large Young's modulus (∼198 GPa), high carrier mobility (∼104 cm2 V-1 s-1) and a low excitonic binding energy of 0.11 eV. Our calculated findings suggest that Be2P4 shows a lattice thermal conductivity of 1.02 W m K-1 at 700 K, resulting in moderate thermoelectric performance (ZT ∼ 0.7), encouraging its use in thermoelectric materials. In addition, a higher adsorption energy of -2.28 eV (-2.52 eV) and less diffusion barrier of 0.22 eV (0.17 eV) for Na(K)-ion batteries promote fast ion transport in the Be2P4 monolayer. This material also shows a high specific capacity and superior energy density of 8460 W h kg-1 (8883 W h kg-1) for Na(K)-ion batteries. Thus, our results offer insightful information for investigating potential thermoelectric and flexible anode materials based on the Be2P4 monolayer.

19.
EMBO Rep ; 25(8): 3627-3650, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38982191

RESUMEN

Skeletal muscle regeneration involves a signaling network that regulates the proliferation, differentiation, and fusion of muscle precursor cells to injured myofibers. IRE1α, one of the arms of the unfolded protein response, regulates cellular proteostasis in response to ER stress. Here, we demonstrate that inducible deletion of IRE1α in satellite cells of mice impairs skeletal muscle regeneration through inhibiting myoblast fusion. Knockdown of IRE1α or its downstream target, X-box protein 1 (XBP1), also inhibits myoblast fusion during myogenesis. Transcriptome analysis revealed that knockdown of IRE1α or XBP1 dysregulates the gene expression of molecules involved in myoblast fusion. The IRE1α-XBP1 axis mediates the gene expression of multiple profusion molecules, including myomaker (Mymk). Spliced XBP1 (sXBP1) transcription factor binds to the promoter of Mymk gene during myogenesis. Overexpression of myomaker in IRE1α-knockdown cultures rescues fusion defects. Inducible deletion of IRE1α in satellite cells also inhibits myoblast fusion and myofiber hypertrophy in response to functional overload. Collectively, our study demonstrates that IRE1α promotes myoblast fusion through sXBP1-mediated up-regulation of the gene expression of multiple profusion molecules, including myomaker.


Asunto(s)
Fusión Celular , Endorribonucleasas , Desarrollo de Músculos , Músculo Esquelético , Mioblastos , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Proteína 1 de Unión a la X-Box , Animales , Proteína 1 de Unión a la X-Box/metabolismo , Proteína 1 de Unión a la X-Box/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Ratones , Mioblastos/metabolismo , Mioblastos/citología , Músculo Esquelético/metabolismo , Músculo Esquelético/citología , Desarrollo de Músculos/genética , Endorribonucleasas/metabolismo , Endorribonucleasas/genética , Células Satélite del Músculo Esquelético/metabolismo , Regeneración/genética , Diferenciación Celular/genética , Regulación de la Expresión Génica , Proteínas de la Membrana , Proteínas Musculares
20.
Ocul Surf ; 34: 108-121, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38972544

RESUMEN

The Mpox virus (MPXV) is the causative agent of human Mpox disease - a debilitating rash illness similar to smallpox. Although Clade I MPXV has remained endemic to West and Central Africa, Clade II MPXV has been responsible for many outbreaks worldwide. The most recent outbreak in 2022 resulted from the rapid spread of a new clade of MPXV, classified into Clade IIb - a distinct lineage from the previously circulating viral strains. The rapid spread and increased severity of Mpox disease by the Clade IIb strain have raised the serious public health imperative of better understanding the host and viral determinants during MPXV infection. In addition to typical skin rashes, including in the periorbital area, MPXV causes moderate to severe ophthalmic manifestations - most commonly, ocular surface complications (e.g., keratitis, conjunctivitis, blepharitis). While ocular manifestations of Clade I Mpox within the Congo basin have been well-reported, global incidence trends of ocular Mpox cases by Clade IIb are still emerging. Given the demonstrated ability of all MPXV strains to auto-inoculate ocular tissue, alongside the enhanced transmissibility of the Clade IIb virus, there is an urgent need to elucidate the mechanisms by which MPXV causes ocular anomalies. In this review, we discuss the viral and genomic structures of MPXV, the epidemiology, and pathology of systemic and ocular Mpox, as well as potential prophylactic and therapeutic interventions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...