Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 100: 3-10, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27327908

RESUMEN

Amyloid fibril formation is a self-assembly reaction induced by favourable conformational changes of proteins leading to a stable, structurally organized aggregates. The deposition of stable protein fibrils in organs and tissues results in many diseases which are generally referred as amyloidosis. Though different disease conditions originate from sequentially and structurally different proteins, their fibrillar forms share common structural features. In vitro, fibril structure and kinetic pathway are investigated by using spectroscopic (fluorescence, circular dichroism, crystallography and solid state-NMR) and microscopic techniques. The kinetics of fibril formation is analysed using different mechanisms to understand the microscopic processes involved in the fibrillation reaction. This review discusses the assumptions, mechanisms, and limitations of some of the widely applied kinetic equations. Understanding of these equations would help to quantify the effect of the different microscopic process on the overall fibrillation kinetics which could aid in designing appropriate molecules to intervene in the aggregation process at different stages.


Asunto(s)
Amiloide/química , Agregado de Proteínas , Amiloide/genética , Animales , Humanos , Cinética , Modelos Moleculares , Mutación , Conformación Proteica
2.
Int J Biol Macromol ; 81: 754-8, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26358551

RESUMEN

Understanding surfactants induced changes on protein folding, aggregation, and fibrillation has a lot of implications in their laboratory and industrial applications. The effect of an anionic surfactant, sodium dodecyl sulphate (SDS), on fibrillation of an acidic protein α-lactalbumin (α-LA) at neutral pH condition was investigated. SDS at lower concentrations increased the lag time by nearly two-fold whereas the fibril elongation rate was not significantly altered. At the concentrations above 0.2mM, SDS lengthened the lag time by many-fold (∼60), but fibril elongation was accelerated by 3-6 fold. At the concentrations above 2mM, SDS inhibited α-LA fibrillation and led it to the formation of amorphous aggregates. These results were compared with the effect of SDS on the fibrillation of lysozyme, a basic protein. Though fibril inhibition was observed on both the proteins at the micellar concentrations of SDS, there were differences in the effect on lag time and elongation rate at the lower concentrations of SDS. This suggests that the inhibition of protein fibrillation by SDS-micelles might be a common mechanism irrespective of the surface charges on protein.


Asunto(s)
Lactalbúmina/química , Agregado de Proteínas , Dodecil Sulfato de Sodio/química , Concentración de Iones de Hidrógeno , Cinética , Agregado de Proteínas/efectos de los fármacos , Unión Proteica , Conformación Proteica , Desnaturalización Proteica/efectos de los fármacos , Pliegue de Proteína , Desplegamiento Proteico , Dodecil Sulfato de Sodio/farmacología , Tensoactivos/química , Tensoactivos/farmacología
3.
Phys Chem Chem Phys ; 16(43): 24076-88, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25288276

RESUMEN

Fibril formation is a common property of many proteins, though not all are associated with diseases. Protein surface charges and the added co-solvents play vital roles in determining fibrillation pathways and kinetics. In order to understand these phenomena, the effects of anionic, cationic and non-ionic surfactants on lysozyme fibrillation were studied. Lysozyme forms fibrils in 2 M and 4 M urea solutions following nucleation-dependent and nucleation-independent pathways, respectively, at neutral pH. Under these conditions, the effects of sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (CTAB), and triton X-100 (Tx) were investigated on the lysozyme structure and fibrillation. The results indicate that there are differential effects of ionic and non-ionic surfactants on fibrillation. In the presence of SDS and CTAB, above their critical micelle concentrations (CMC), lysozyme could not form fibrils. However, non-ionic Tx does not inhibit fibril formation at all concentrations. Note that the time for complete fibril formation is increased by Tx. All of the surfactants are found to increase the initial nucleation phase; however, the extent of increase is less at near the CMC of the ionic surfactants and at above the CMC of Tx. The rates of fibril elongation show varying effects in the presence of different surfactants. The results suggest that the nucleation phase of lysozyme fibrillation is primarily controlled by charge interactions and micellation of the surfactants, but multiple factors might influence the fibril elongation. Furthermore, the surfactants do not alter the fibrillation pathway from nucleation-dependent to nucleation-independent or vice versa in the studied conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...