Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Ayurveda Integr Med ; 11(2): 106-109, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32265097

RESUMEN

Diabetes mellitus is a metabolic disorder of multiple etiology, characterized by chronic hyperglycaemia with disturbance of carbohydrate, fat, and protein metabolism resulting from defect in insulin secretion, insulin action or both. Improper lifestyle contributes to the increasing number of people affected with Type 2 diabetes mellitus (T2DM). Systematic reviews on the management of T2DM in adults through Yoga reported significant improvements in multiple modifiable indices of diabetes mellitus management including glycemic control, lipid levels, and body composition. Awareness levels of a condition among the population play a critical role in behaviour change. However, studies related to assessing the awareness and practice of Yoga for managing diseases are limited. Hence, this study was formulated with the objective of assessing the awareness level and extent of knowledge about diabetes mellitus and its management through yoga. A cross-sectional survey with a sample size of 317 was conducted using a structured questionnaire at 5 districts in Tamil Nadu and Kerala. 95% of the study population were aware of diabetes mellitus while 61.2% responded that diabetes can be prevented by regular exercise and healthy diet. 62.4% people perceived that yoga practices can prevent diabetes mellitus and 59% mentioned that regular yoga practice can help in controlling diabetes and prevent further complications. Only 13% reported to practice Yoga regularly at least three days a week. Identifying a qualified Yoga trainer was reported to be a limiting factor for regular yoga practice. The study suggested that there is a need to increase the access to qualified Yoga professionals at community level. Further large scale studies with random sampling method to assess the awareness level and practice of Yoga in different settings is indicated.

2.
Chem Commun (Camb) ; 55(70): 10444-10447, 2019 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-31410430

RESUMEN

A new series of 2D catalytic materials whose inorganic surfaces are fully covered with pre-designed "promoter" groups are reported. One of them showed excellent biomimetic catalytic activity and provided the lowest detection limit to glucose among the reported 2D materials and their composite materials.


Asunto(s)
Biomimética , Calcógenos/química , Metales/química , Catálisis , Límite de Detección , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Espectroscopía de Fotoelectrones , Difracción de Polvo
3.
ACS Appl Mater Interfaces ; 9(30): 25278-25290, 2017 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-28692805

RESUMEN

A novel yet simple approach of carbonate (CBN) treatment of TiO2 films is performed, and quantum dot solar cells (QDSCs) with high power conversion efficiencies (PCEs), reasonably good stabilities, and good fill factors (FFs) are fabricated with TiO2-CBN films. The ability of carbonate groups to passivate defects or oxygen vacancies of TiO2 is confirmed from a nominally enhanced band gap, a lowered defect induced fluorescence intensity, an additional Ti-OH signal obtained after carbonate decomposition, and a more capacitive low frequency electrochemical impedance behavior achieved for TiO2-CBN compared to untreated TiO2. A large area QDSC of 1 cm2 with a TiO2-CBN/CdS/Au@PAA (poly(acrylic acid)) photoanode delivers an enhanced PCE of 4.32% as opposed to 3.03% achieved for its analogous cell with untreated TiO2. Impedance analysis illustrates the role of carbonate treatment in increasing the recombination resistance at the photoanode/electrolyte interfaces and in suppressing back-electron transfer to the electrolyte, thus validating the superior PCE achieved for the cell with carbonate-treated TiO2. QDSCs with the configuration TiO2-CBN/CdS/Au@PAA-polysulfide/SiO2 gel-carbon-fabric/WO3-x and active areas of 0.2-0.3 cm2 yield efficiencies in the range of 5.16 to 6.3%, and the average efficiency of the cells is 5.9%. The champion cell is characterized by the following photovoltaic parameters: JSC (short circuit current density), 11.04 mA cm-2; VOC (open circuit voltage), 0.9 V; FF, 0.63; and PCE, 6.3%. Stability tests performed on this cell show that dark storage has a less deleterious effect on cell performance compared to extended illumination. In dark, the PCE of the cell dropped from 5.69 to 5.52%, and under prolonged continuous irradiance of 5 h, it decreased from 5.91 to 4.83%. A scaled-up QDSC with the same architecture of 4 cm2 size showed a PCE of 1.06%, and the demonstration of the lighting of a LED accomplished using this cell exemplifies that this cell can be used for powering electronic devices that require low power.

4.
Phys Chem Chem Phys ; 19(6): 4607-4617, 2017 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-28124689

RESUMEN

Charge transfer at the TiO2/quantum dots (QDs) interface, charge collection at the TiO2/QDs/current collector (FTO or SnO2:F) interface, and back electron transfer at the TiO2/QDs/S2- interface are processes controlled by the electron transport layer or TiO2. These key processes control the power conversion efficiencies (PCEs) of quantum dot solar cells (QDSCs). Here, four TiO2 morphologies, porous nanoparticles (PNPs), nanowires (NWs), nanosheets (NSHs) and nanoparticles (NPs), were sensitized with CdS and the photovoltaic performances were compared. The marked differences in the cell parameters on going from one morphology to the other have been explained by correlating the shape, structure and the above-described interfacial properties of a given TiO2 morphology to the said parameters. The average magnitudes of PCEs follow the order: NWs (5.96%) > NPs (4.95%) > PNPs (4.85%) > NSHs (2.5%), with the champion cell based on NWs exhibiting a PCE of 6.29%. For NWs, an optimal balance between the fast photo-excited electron injection to NWs at the NW/CdS interface, the high resistance offered at the TiO2 NW/CdS/S2- interfaces to electron recombination with the oxidized electrolyte or with the holes in CdS, the low electron transport resistance in NWs, and low dark currents, yields the highest efficiency due to directional unhindered transport of electrons afforded by the NWs. For NSHs, electron trapping in the two dimensional sheets, and a high electron recombination rate prevent the effective transfer of electrons to FTO, thus reducing short circuit current density significantly, resulting in a poor performance. This study provides a deep understanding of charge transfer, transport and collection processes necessary for the design of efficient QDSCs.

5.
ACS Appl Mater Interfaces ; 8(41): 27688-27700, 2016 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-27700023

RESUMEN

The counter electrode (CE), despite being as relevant as the photoanode in a quantum dot solar cell (QDSC), has hardly received the scientific attention it deserves. In this study, nine CEs (single-walled carbon nanotubes (SWCNTs), tungsten oxide (WO3), poly(3,4-ethylenedioxythiophene) (PEDOT), copper sulfide (Cu2S), candle soot, functionalized multiwalled carbon nanotubes (F-MWCNTs), reduced tungsten oxide (WO3-x), carbon fabric (C-Fabric), and C-Fabric/WO3-x) were prepared by using low-cost components and facile procedures. QDSCs were fabricated with a TiO2/CdS film which served as a common photoanode for all CEs. The power conversion efficiencies (PCEs) were 2.02, 2.1, 2.79, 2.88, 2.95, 3.78, 3.66, 3.96, and 4.6%, respectively, and the incident photon to current conversion efficiency response was also found to complement the PCE response. Among all CEs employed here, C-Fabric/WO3-x outperforms all the other CEs, for the synergy between C-Fabric and WO3-x comes to the fore during cell operation. The low sheet resistance of C-Fabric and its high surface area due to the meshlike morphology enables high WO3-x loading during electrodeposition, and the good electrocatalytic activity of WO3-x, the very low overpotential, and its high electrical conductivity that facilitate electron transfer to the electrolyte are responsible for the superior PCE. WO3-based electrodes have not been used until date in QDSCs; the ease of fabrication of WO3 films and their good chemical stability and scalability also favor their application to QDSCs. Futuristic possibilities for other novel composite CEs are also discussed. We anticipate this study to be useful for a well-rounded development of high-performance QDSCs.

6.
ACS Appl Mater Interfaces ; 7(24): 13303-13, 2015 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-26000891

RESUMEN

Quantum dot solar cells (QDSCs) were fabricated using low-cost Cu nanostructures and a carbon fabric as a counter electrode for the first time. Cu nanoparticles (NPs) and nanoneedles (NNs) with a face-centered cubic structure were synthesized by a hydrothermal method and electrophoretically deposited over a CdS QD sensitized titania (TiO2) electrode. Compared to Cu NPs, which increase the light absorption of a TiO2/CdS photoanode via scattering effects only in the visible region, Cu NNs are more effective for efficient far-field light scattering; they enhance the light absorption of the TiO2/CdS assembly beyond the visible to near-infrared (NIR) regions as well. The highest fluorescence quenching, lowest excited electron lifetime, and a large surface potential (deduced from Kelvin probe force microscopy (KPFM)) observed for the TiO2/CdS/Cu NN electrode compared to TiO2/CdS and TiO2/CdS/Cu NP electrodes confirm that Cu NNs also facilitate charge transport. KPFM studies also revealed a larger shift of the apparent Fermi level to more negative potentials in the TiO2/CdS/Cu NN electrode, compared to the other two electrodes (versus NHE), which results in a higher open-circuit voltage for the Cu NN based electrode. The best performing QDSC based on the TiO2/CdS/Cu NN electrode delivers a stellar power conversion efficiency (PCE) of 4.36%, greater by 56.8% and 32.1% than the PCEs produced by the cells based on TiO2/CdS and TiO2/CdS/Cu NPs, respectively. A maximum external quantum efficiency (EQE) of 58% obtained for the cell with the TiO2/CdS/Cu NN electrode and a finite EQE in the NIR region which the other two cells do not deliver are clear indicators of the enormous promise this cheap, earth-abundant Cu nanostructure holds for amplifying the solar cell response in both the visible and near-infrared regions through scattering enhancements.

7.
Phys Chem Chem Phys ; 17(15): 10040-52, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25785507

RESUMEN

A novel photoanode architecture with plasmonic silver (Ag) nanostructures embedded in titania (TiO2), which served as the wide band gap semiconducting support and CdS quantum dots (QDs), as light absorbers, is presented. Ag nanostructures were prepared by a polyol method and are comprised of clumps of nanorods, 15-35 nm wide, interspersed with globular nanoparticles and they were characterized by a face centered cubic lattice. Optimization of Ag nanostructures was achieved on the basis of a superior power conversion efficiency (PCE) obtained for the cell with a Ag/TiO2/CdS electrode encompassing a mixed morphology of Ag nano-rods and particles, relative to analogous cells with either Ag nanoparticles or Ag nanorods. Interfacial charge transfer kinetics was unraveled by fluorescence quenching and lifetime studies. Ag nanostructures improve the light harvesting ability of the TiO2/CdS photoanode via (a) plasmonic and scattering effects, which induce both near- and far-field enhancements which translate to higher photocurrent densities and (b) charging effects, whereby, photoexcited electron transfer from TiO2 to Ag is facilitated by Fermi level equilibration. Owing to the spectacular ability of Ag nanostructures to increase light absorption, a greatly increased PCE of 4.27% and a maximum external quantum efficiency of 55% (at 440 nm) was achieved for the cell based on Ag/TiO2/CdS, greater by 42 and 66%, respectively, compared to the TiO2/CdS based cell. In addition, the liquid S(2-) electrolyte was replaced by a S(2-) gel containing fumed silica, and the redox potential, conductivity and p-type conduction of the two were deduced to be comparable. Although the gel based cells showed diminished solar cell performances compared to their liquid counterparts, nonetheless, the Ag/TiO2/CdS electrode continued to outperform the TiO2/CdS electrode. Our studies demonstrate that Ag nanostructures effectively capture a significant chunk of the electromagnetic spectrum and aid QD solar cells in delivering high power conversion efficiencies.

8.
J Surg Tech Case Rep ; 7(1): 4-6, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-27512542

RESUMEN

Persistent Mullerian duct syndrome (PMDS) is a rare form of male pseudohermaphroditism characterized by the presence of Mullerian duct structures in a normal male with 46, XY karyotype. Transverse testicular ectopia (TTE) is rare form of testicular ectopia in which two testes are located on one inguinal side. The opposite scrotum is empty. PMDS with TTE is rare. We report a case of PMDS with TTE discovered during surgery for a right inguinal hernia in a 25-year-old male.

9.
Chemphyschem ; 16(2): 377-89, 2015 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-25371375

RESUMEN

A poly(3,4-ethylenedioxypyrrole)-gold nanoparticle (Au)-tungsten oxide (PEDOP-Au@WO3 ) electrochromic supercapacitor electrode capable of optically modulating solar energy while simultaneously storing/releasing energy (in the form of charge) was fabricated for the first time. WO3 fibers, 50 to 200 nm long and 20 to 60 nm wide, were synthesized by a hydrothermal route and were electrophoretically deposited on a conducting substrate. Au nanoparticles and PEDOP were coated over WO3 to yield the PEDOP-Au@WO3 hybrid electrode. The inclusion of Au in the hybrid was confirmed by X-ray diffraction, Raman spectroscopy, and energy-dispersive X-ray analyses. The nanoscale electronic conductivity, coloration efficiency, and transmission contrast of the hybrid were found to be significantly greater than those of pristine WO3 and PEDOP. The hybrid showed a high specific discharge capacitance of 130 F g(-1) during coloration, which was four and ten times greater than the capacitance achieved in WO3 or PEDOP, respectively. We also demonstrate the ability of the PEDOP-Au@WO3 hybrid, relative to pristine PEDOP, to perform as a superior counter electrode in a solar cell, which is attributed to a higher work function. The capacitance and redox switching capability of the hybrid decreases insignificantly with cycling, thus establishing the viability of this multifunction hybrid for next-generation sustainable devices such as electrochromic psuedocapacitors because it can concurrently conserve and store energy.

10.
Phys Chem Chem Phys ; 16(45): 24691-6, 2014 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-25315711

RESUMEN

Organic-inorganic hybrid perovskite solar cells with fluorine doped tin oxide/titanium dioxide/CH3NH3PbI3-xClx/poly(3-hexylthiophene)/silver were made in air with more than 50% humidity. The best devices showed an open circuit voltage of 640 mV, a short circuit current density of 18.85 mA cm(-2), a fill factor of 0.407 and a power conversion efficiency of 5.67%. The devices showed external quantum efficiency varying from 60 to 80% over a wavelength region of 350 nm to 750 nm of the solar spectrum. The morphology of the perovskite was investigated using scanning electron microscopy and it was found to be porous in nature. This study provides insights into air-stability of perovskite solar cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...