Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 65(15): 10506-10522, 2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-35763668

RESUMEN

The highly homologous protein lysine methyltransferases G9a and GLP, which catalyze mono- and dimethylation of histone H3 lysine 9 (H3K9), have been implicated in various human diseases. To investigate functions of G9a and GLP in human diseases, we and others reported several noncovalent reversible small-molecule inhibitors of G9a and GLP. Here, we report the discovery of the first-in-class G9a/GLP covalent irreversible inhibitors, 1 and 8 (MS8511), by targeting a cysteine residue at the substrate binding site. We characterized these covalent inhibitors in enzymatic, mass spectrometry based and cellular assays and using X-ray crystallography. Compared to the noncovalent G9a/GLP inhibitor UNC0642, covalent inhibitor 8 displayed improved potency in enzymatic and cellular assays. Interestingly, compound 8 also displayed potential kinetic preference for covalently modifying G9a over GLP. Collectively, compound 8 could be a useful chemical tool for studying the functional roles of G9a and GLP by covalently modifying and inhibiting these methyltransferases.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Lisina , Cristalografía por Rayos X , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Lisina/metabolismo , Espectrometría de Masas
2.
J Am Chem Soc ; 143(37): 15073-15083, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34520194

RESUMEN

Proteolysis targeting chimeras (PROTACs) represent a new class of promising therapeutic modalities. PROTACs hijack E3 ligases and the ubiquitin-proteasome system (UPS), leading to selective degradation of the target proteins. However, only a very limited number of E3 ligases have been leveraged to generate effective PROTACs. Herein, we report that the KEAP1 E3 ligase can be harnessed for targeted protein degradation utilizing a highly selective, noncovalent small-molecule KEAP1 binder. We generated a proof-of-concept PROTAC, MS83, by linking the KEAP1 ligand to a BRD4/3/2 binder. MS83 effectively reduces protein levels of BRD4 and BRD3, but not BRD2, in cells in a concentration-, time-, KEAP1- and UPS-dependent manner. Interestingly, MS83 degrades BRD4/3 more durably than the CRBN-recruiting PROTAC dBET1 in MDA-MB-468 cells and selectively degrades BRD4 short isoform over long isoform in MDA-MB-231 cells. It also displays improved antiproliferative activity than dBET1. Overall, our study expands the limited toolbox for targeted protein degradation.


Asunto(s)
Antineoplásicos , Proteína 1 Asociada A ECH Tipo Kelch , Humanos , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Modelos Moleculares , Proteolisis , Neoplasias de la Mama Triple Negativas
3.
Chembiochem ; 22(2): 288-297, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-32706524

RESUMEN

Few other elements play a more central role in biology than hydrogen. The interactions, bonding and movement of hydrogen atoms are central to biological catalysis, structure and function. Yet owing to the elusive nature of a single hydrogen atom few experimental and computational techniques can precisely determine its location. This is exemplified in short hydrogen bonds (SHBs) where the location of the hydrogen atom is indicative of the underlying strength of the bonds, which can vary from 1-5 kcal/mol in canonical hydrogen bonds, to an almost covalent nature in single-well hydrogen bonds. Owing to the often-times inferred position of hydrogen, the role of SHBs in biology has remained highly contested and debated. This has also led to discrepancies in computational, biochemical and structural studies of proteins thought to use SHBs in performing chemistry and stabilizing interactions. Herein, we discuss in detail two distinct examples, namely the conserved catalytic triad and the photoreceptor, photoactive yellow protein, where studies of these SHB-containing systems have permitted contextualization of the role these unique hydrogen bonds play in biology.


Asunto(s)
Hidrógeno/metabolismo , Proteínas/metabolismo , Biocatálisis , Hidrógeno/química , Enlace de Hidrógeno , Proteínas/química
4.
Angew Chem Int Ed Engl ; 58(45): 16260-16266, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31515870

RESUMEN

The position, bonding and dynamics of hydrogen atoms in the catalytic centers of proteins are essential for catalysis. The role of short hydrogen bonds in catalysis has remained highly debated and led to establishment of several distinctive geometrical arrangements of hydrogen atoms vis-à-vis the heavier donor and acceptor counterparts, that is, low-barrier, single-well or short canonical hydrogen bonds. Here we demonstrate how the position of a hydrogen atom in the catalytic triad of an aminoglycoside inactivating enzyme leads to a thirty-fold increase in catalytic turnover. A low-barrier hydrogen bond is present in the enzyme active site for the substrates that are turned over the best, whereas a canonical hydrogen bond is found with the least preferred substrate. This is the first comparison of these hydrogen bonds involving an identical catalytic network, while directly demonstrating how active site electrostatics adapt to the electronic nature of substrates to tune catalysis.


Asunto(s)
Acetiltransferasas/metabolismo , Aminoglicósidos/metabolismo , Antibacterianos/metabolismo , Acetiltransferasas/química , Aminoglicósidos/química , Antibacterianos/química , Sitios de Unión , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Conformación Proteica , Electricidad Estática
5.
J Med Chem ; 61(22): 10218-10227, 2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-30347146

RESUMEN

Aminoglycoside antibiotics are a large family of antibiotics that can be divided into two distinct classes on the basis of the substitution pattern of the central deoxystreptamine ring. Although aminoglycosides are chemically, structurally, and topologically diverse, some aminoglycoside-modifying enzymes (AGMEs) are able to inactivate as many as 15 aminoglycosides from the two main classes, the kanamycin- and neomycin-based antibiotics. Here, we present the crystal structure of a promiscuous AGME, aminoglycoside- N3-acetyltransferase-IIIb (AAC-IIIb), in the apo form, in binary drug (sisomicin, neomycin, and paromomycin) and coenzyme A (CoASH) complexes, and in the ternary neomycin-CoASH complex. These data provide a structural framework for interpretation of the thermodynamics of enzyme-ligand interactions and the role of solvent in the recognition of ligands. In combination with the recent structure of an AGME that does not have broad substrate specificity, these structures allow for the direct determination of how antibiotic promiscuity is encoded in some AGMEs.


Asunto(s)
Acetiltransferasas/metabolismo , Acetiltransferasas/química , Secuencia de Aminoácidos , Aminoglicósidos/química , Aminoglicósidos/metabolismo , Aminoglicósidos/farmacología , Sitios de Unión , Ligandos , Modelos Moleculares , Conformación Proteica , Solventes/química , Especificidad por Sustrato , Termodinámica
6.
Sci Adv ; 4(4): eaas8667, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29632894

RESUMEN

One group of enzymes that confer resistance to aminoglycoside antibiotics through covalent modification belongs to the GCN5-related N-acetyltransferase (GNAT) superfamily. We show how a unique GNAT subfamily member uses a previously unidentified noncanonical catalytic triad, consisting of a glutamic acid, a histidine, and the antibiotic substrate itself, which acts as a nucleophile and attacks the acetyl donor molecule. Neutron diffraction studies allow for unambiguous identification of a low-barrier hydrogen bond, predicted in canonical catalytic triads to increase basicity of the histidine. This work highlights the role of this unique catalytic triad in mediating antibiotic resistance while providing new insights into the design of the next generation of aminoglycosides.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Farmacorresistencia Microbiana , Enlace de Hidrógeno , Aminoglicósidos/química , Aminoglicósidos/farmacología , Catálisis , Cristalografía por Rayos X , Diseño de Fármacos , Modelos Moleculares , Conformación Molecular , Neutrones , Relación Estructura-Actividad , Temperatura
7.
Proteins ; 85(7): 1258-1265, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28316100

RESUMEN

Kinetic, thermodynamic, and structural properties of the aminoglycoside N3-acetyltransferase-VIa (AAC-VIa) are determined. Among the aminoglycoside N3-acetyltransferases, AAC-VIa has one of the most limited substrate profiles. Kinetic studies showed that only five aminoglycosides are substrates for this enzyme with a range of fourfold difference in kcat values. Larger differences in KM (∼40-fold) resulted in ∼30-fold variation in kcat /KM . Binding of aminoglycosides to AAC-VIa was enthalpically favored and entropically disfavored with a net result of favorable Gibbs energy (ΔG < 0). A net deprotonation of the enzyme, ligand, or both accompanied the formation of binary and ternary complexes. This is opposite of what was observed with several other aminoglycoside N3-acetyltransferases, where ligand binding causes more protonation. The change in heat capacity (ΔCp) was different in H2 O and D2 O for the binary enzyme-sisomicin complex but remained the same in both solvents for the ternary enzyme-CoASH-sisomicin complex. Unlike, most other aminoglycoside-modifying enzymes, the values of ΔCp were within the expected range of protein-carbohydrate interactions. Solution behavior of AAC-VIa was also different from the more promiscuous aminoglycoside N3-acetyltransferases and showed a monomer-dimer equilibrium as detected by analytical ultracentrifugation (AUC). Binding of ligands shifted the enzyme to monomeric state. Data also showed that polar interactions were the most dominant factor in dimer formation. Overall, thermodynamics of ligand-protein interactions and differences in protein behavior in solution provide few clues on the limited substrate profile of this enzyme despite its >55% sequence similarity to the highly promiscuous aminoglycoside N3-acetyltransferase. Proteins 2017; 85:1258-1265. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Acetiltransferasas/química , Antibacterianos/química , Proteínas Bacterianas/química , Enterobacter cloacae/química , Protones , Sisomicina/química , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Secuencias de Aminoácidos , Antibacterianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Clonación Molecular , Óxido de Deuterio/química , Enterobacter cloacae/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Gentamicinas/química , Gentamicinas/metabolismo , Kanamicina/química , Kanamicina/metabolismo , Cinética , Ligandos , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sisomicina/metabolismo , Homología Estructural de Proteína , Especificidad por Sustrato , Termodinámica , Tobramicina/química , Tobramicina/metabolismo , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...