Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
BMC Med ; 22(1): 254, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902659

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disease characterized by Aß plaques and neurofibrillary tangles. Chronic inflammation and synaptic dysfunction lead to disease progression and cognitive decline. Small extracellular vesicles (sEVs) are implicated in AD progression by facilitating the spread of pathological proteins and inflammatory cytokines. This study investigates synaptic dysfunction and neuroinflammation protein markers in plasma-derived sEVs (PsEVs), their association with Amyloid-ß and tau pathologies, and their correlation with AD progression. METHODS: A total of 90 [AD = 35, mild cognitive impairment (MCI) = 25, and healthy age-matched controls (AMC) = 30] participants were recruited. PsEVs were isolated using a chemical precipitation method, and their morphology was characterized by transmission electron microscopy. Using nanoparticle tracking analysis, the size and concentration of PsEVs were determined. Antibody-based validation of PsEVs was done using CD63, CD81, TSG101, and L1CAM antibodies. Synaptic dysfunction and neuroinflammation were evaluated with synaptophysin, TNF-α, IL-1ß, and GFAP antibodies. AD-specific markers, amyloid-ß (1-42), and p-Tau were examined within PsEVs using Western blot and ELISA. RESULTS: Our findings reveal higher concentrations of PsEVs in AD and MCI compared to AMC (p < 0.0001). Amyloid-ß (1-42) expression within PsEVs is significantly elevated in MCI and AD compared to AMC. We could also differentiate between the amyloid-ß (1-42) expression in AD and MCI. Similarly, PsEVs-derived p-Tau exhibited elevated expression in MCI compared with AMC, which is further increased in AD. Synaptophysin exhibited downregulated expression in PsEVs from MCI to AD (p = 0.047) compared to AMC, whereas IL-1ß, TNF-α, and GFAP showed increased expression in MCI and AD compared to AMC. The correlation between the neuropsychological tests and PsEVs-derived proteins (which included markers for synaptic integrity, neuroinflammation, and disease pathology) was also performed in our study. The increased number of PsEVs correlates with disease pathological markers, synaptic dysfunction, and neuroinflammation. CONCLUSIONS: Elevated PsEVs, upregulated amyloid-ß (1-42), and p-Tau expression show high diagnostic accuracy in AD. The downregulated synaptophysin expression and upregulated neuroinflammatory markers in AD and MCI patients suggest potential synaptic degeneration and neuroinflammation. These findings support the potential of PsEV-associated biomarkers for AD diagnosis and highlight synaptic dysfunction and neuroinflammation in disease progression.


Asunto(s)
Enfermedad de Alzheimer , Vesículas Extracelulares , Humanos , Enfermedad de Alzheimer/patología , Vesículas Extracelulares/metabolismo , Masculino , Anciano , Femenino , Estudios de Casos y Controles , Péptidos beta-Amiloides/metabolismo , Anciano de 80 o más Años , Enfermedades Neuroinflamatorias , Biomarcadores/sangre , Sinapsis/patología , Disfunción Cognitiva , Persona de Mediana Edad , Proteínas tau/metabolismo
2.
Bone ; 185: 117126, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38777312

RESUMEN

Chronic kidney disease-induced secondary hyperparathyroidism (CKD-SHPT) heightens fracture risk through impaired mineral homeostasis and elevated levels of uremic toxins (UTs), which in turn enhance bone remodeling. Etelcalcetide (Etel), a calcium-sensing receptor (CaSR) agonist, suppresses parathyroid hormone (PTH) in hyperparathyroidism to reduce excessive bone resorption, leading to increased bone mass. However, Etel's effect on bone quality, chemical composition, and strength is not well understood. To address these gaps, we established a CKD-SHPT rat model and administered Etel at a human-equivalent dose concurrently with disease induction. The effects on bone and mineral homeostasis were compared with a CKD-SHPT (vehicle-treated group) and a control group (rats without SHPT). Compared with vehicle-treated CKD-SHPT rats, Etel treatment improved renal function, reduced circulating UT levels, improved mineral homeostasis parameters, decreased PTH levels, and prevented mineralization defects. The upregulation of mineralization-promoting genes by Etel in CKD-SHPT rats might explain its ability to prevent mineralization defects. Etel preserved both trabecular and cortical bones with attendant suppression of osteoclast function, besides increasing mineralization. Etel maintained the number of viable osteocytes to the control level, which could also contribute to its beneficial effects on bone. CKD-SHPT rats displayed increased carbonate substitution of matrix and mineral, decreased crystallinity, mineral-to-matrix ratio, and collagen maturity, and these changes were mitigated by Etel. Further, Etel treatment prevented CKD-SHPT-induced deterioration in bone strength and mechanical behavior. Based on these findings, we conclude that in CKD-SHPT rats, Etel has multiscale beneficial effects on bone that involve remodeling suppression, mineralization gene upregulation, and preservation of osteocytes.


Asunto(s)
Huesos , Calcimiméticos , Hiperparatiroidismo Secundario , Péptidos , Ratas Sprague-Dawley , Insuficiencia Renal Crónica , Animales , Hiperparatiroidismo Secundario/tratamiento farmacológico , Hiperparatiroidismo Secundario/patología , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/metabolismo , Huesos/efectos de los fármacos , Huesos/metabolismo , Huesos/patología , Péptidos/farmacología , Calcimiméticos/farmacología , Calcimiméticos/uso terapéutico , Ratas , Hormona Paratiroidea/farmacología , Masculino , Calcificación Fisiológica/efectos de los fármacos , Densidad Ósea/efectos de los fármacos
3.
Heliyon ; 10(7): e29079, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38596136

RESUMEN

The survival rate over a five-year period for rare pancreatic neuroendocrine tumors (PanNET) is notably lower compared to other neuroendocrine tumors due to late-stage detection, which is a consequence of the absence of suitable diagnostic markers; therefore, there exists a critical need for an early-stage biomarker-specific to PanNETs. This study introduces a novel approach, investigating the impact of small extracellular vesicles (sEV) in PanNET growth and metastasis. As proof of concept, this study shows a correlation between sEV concentration in controls and PanNET. Notably, higher sEV concentrations were observed in PanNETs than in controls (p < 0.0001) with a sensitivity of 100%. Further, apparent differences were observed in the sEV concentrations between controls and grades 1 PanNET (p = 0.005). The expression of sEV markers was confirmed using CD63, TSG101, CD9, Flotillin-1, and GAD65 antibodies. Additionally, the expression of cancer marker BIRC2/cIAP1 (p = 0.002) and autophagy marker Beclin-1 (p = 0.02) were observed in plasma-derived sEVs and PanNET tissue. This study represents the first to indicate the increased secretion of sEV in PanNET patients' blood plasma, proposing potential function of sEV as a new biomarker for early-stage PanNET detection.

4.
Sci Rep ; 14(1): 9347, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654096

RESUMEN

Breast cancer, a leading cause of female mortality due to delayed detection owing to asymptomatic nature and limited early diagnostic tools, was investigated using a multi-modal approach. Plasma-derived small EVs from breast cancer patients (BrCa, n = 74) and healthy controls (HC, n = 30) were analyzed. Small EVs (n = 104), isolated through chemical precipitation, underwent characterization via transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). Validation involved antibody-based tests (TSG101, CD9, CD81, CD63). Infrared spectra of small EVs were obtained, revealing significant differences in lipid acyl chains, particularly in the C-H stretching of CH3. The study focused on the lipid region (3050-2900 cm-1), identifying peaks (3015 cm-1, 2960 cm-1, 2929 cm-1) as distinctive lipid characteristics. Spectroscopic lipid-to-lipid ratios [(I3015/I2929), (I2960/I2929)] emerged as prominent breast cancer markers. Exploration of protein, nucleic acid, and carbohydrate ratios indicated variations in alpha helices, asymmetric C-H stretching vibrations, and C-O stretching at 1033 cm-1. Principal component analysis (PCA) successfully differentiated BrCa and HC small EVs, and heatmap analysis and receiver operating characteristic (ROC) curve evaluations underscored the discriminatory power of lipid ratios. Notably, (I2960/I2929) exhibited 100% sensitivity and specificity, highlighting its potential as a robust BrCa sEV marker for breast cancer detection.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama , Vesículas Extracelulares , Lípidos , Espectrofotometría Infrarroja , Humanos , Neoplasias de la Mama/diagnóstico , Femenino , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Lípidos/química , Lípidos/análisis , Espectrofotometría Infrarroja/métodos , Persona de Mediana Edad , Adulto , Anciano
5.
ACS Chem Neurosci ; 15(7): 1388-1414, 2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38525886

RESUMEN

Alzheimer's disease (AD) is the most common cause of dementia, which arises due to low levels of acetyl and butyrylcholines, an increase in oxidative stress, inflammation, metal dyshomeostasis, Aß and tau aggregations. The currently available drugs for AD treatment can provide only symptomatic relief without interfering with pathological hallmarks of the disease. In our ongoing efforts to develop naturally inspired novel multifunctional molecules for AD, systematic SAR studies on EJMC-4e were caried out to improve its multifunctional properties. The rigorous medicinal efforts led to the development of 12o, which displayed a 15-fold enhancement in antioxidant properties and a 2-fold increase in the activity against AChE and BChE over EJMC-4e. Molecular docking and dynamics studies revealed the binding sites and stability of the complex of 12o with AChE and BChE. The PAMPA-BBB assay clearly demonstrated that 12o can easily cross the blood-brain barrier. Interestingly, 12o also expresses promising metal chelation activity, while EJMC-4e was found to be devoid of this property. Further, 12o inhibited metal-induced or self Aß1-42 aggregation. Observing the neuroprotection ability of 12o against H2O2-induced oxidative stress in the PC-12 cell line is noteworthy. Furthermore, 12o also inhibited NLRP3 inflammasome activation and attenuated mitochondrial-induced ROS and MMP damage caused by LPS and ATP in HMC-3 cells. In addition, 12o is able to effectively reduce mitochondrial and cellular oxidative stress in the AD Drosophila model. Finally, 12o could reverse memory impairment in the scopolamine-induced AD mice model, as evident through in vivo and ex vivo studies. These findings suggest that this compound may act as a promising candidate for further improvement in the management of AD.


Asunto(s)
Enfermedad de Alzheimer , Ácidos Cumáricos , Ratones , Ratas , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Inflamasomas , Péptidos beta-Amiloides/metabolismo , Inhibidores de la Colinesterasa/química , Simulación del Acoplamiento Molecular , Proteína con Dominio Pirina 3 de la Familia NLR , Peróxido de Hidrógeno , Metales , Células PC12 , Acetilcolinesterasa/metabolismo
6.
Bioorg Med Chem ; 98: 117564, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38171251

RESUMEN

The process of ferroptosis, a recently identified form of regulated cell death (RCD) is associated with the overloading of iron species and lipid-derived ROS accumulation. Ferroptosis is induced by various mechanisms such as inhibiting system Xc, glutathione depletion, targeting excess iron, and directly inhibiting GPX4 enzyme. Also, ferroptosis inhibition is achieved by blocking excessive lipid peroxidation by targeting different pathways. These mechanisms are often related to the pathophysiology and pathogenesis of diseases like cancer and Alzheimer's. Fundamentally distinct from other forms of cell death, such as necrosis and apoptosis, ferroptosis differs in terms of biochemistry, functions, and morphology. The mechanism by which ferroptosis acts as a regulatory factor in many diseases remains elusive. Studying the activation and inhibition of ferroptosis as a means to mitigate the progression of various diseases is a highly intriguing and actively researched topic. It has emerged as a focal point in etiological research and treatment strategies. This review systematically summarizes the different mechanisms involved in the inhibition and induction of ferroptosis. We have extensively explored different agents that can induce or inhibit ferroptosis. This review offers current perspectives on recent developments in ferroptosis research, highlighting the disease's etiology and presenting references to enhance its understanding. It also explores new targets for the treatment of cancer and Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Ferroptosis , Neoplasias , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Neoplasias/metabolismo , Apoptosis , Hierro/metabolismo , Peroxidación de Lípido
7.
Calcif Tissue Int ; 114(3): 295-309, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38102510

RESUMEN

Vascular dysfunction contributes to the development of osteopenia in hypertensive patients, as decreased blood supply to bones results in tissue damage and dysfunction. The effect of anti-hypertensive medicines on bone mass in hypertensive individuals is inconclusive because of the varied mechanism of their action, and suggests that reducing blood pressure (BP) alone is insufficient to enhance bone mass in hypertension. Pentoxifylline (PTX), a hemorheological drug, improves blood flow by reducing blood viscosity and angiogenesis, also has an osteogenic effect. We hypothesized that improving vascular function is critical to increasing bone mass in hypertension. To test this, we screened various anti-hypertensive drugs for their in vitro osteogenic effect, from which timolol and hydralazine were selected. In adult female spontaneously hypertensive rats (SHRs), timolol and hydralazine did not improve vascular function and bone mass, but PTX improved both. In female SHR animals, PTX restored bone mass, strength and mineralization, up to the level of normotensive control rats. In addition, we observed lower blood vasculature in the femur of adult SHR animals, and PTX restored them. PTX also restored the bone vascular and angiogenesis parameters that had been impaired in OVX SHR compared to sham SHR. This study demonstrates the importance of vascular function in addition to increased bone mass for improving bone health as achieved by PTX without affecting BP, and suggests a promising treatment option for osteoporosis in hypertensive patients, particularly at-risk postmenopausal women.


Asunto(s)
Hipertensión , Pentoxifilina , Humanos , Ratas , Femenino , Animales , Antihipertensivos/farmacología , Antihipertensivos/uso terapéutico , Densidad Ósea , Timolol/farmacología , Timolol/uso terapéutico , Hipertensión/tratamiento farmacológico , Ratas Endogámicas SHR , Pentoxifilina/farmacología , Hidralazina/farmacología , Hidralazina/uso terapéutico , Presión Sanguínea
8.
J Proteomics ; 293: 105059, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38151158

RESUMEN

Urinary small extracellular vesicles or exosomes (uEVs) source could be an emerging trove of biomarkers in coronary artery disease (CAD). It is a chronic inflammatory disease having a long asymptomatic phase of fatty-fibrous development in arteries leading to angina, myocardial infarction, and death. Our study was aimed at identifying differential protein expression profiling of uEVs in CAD. We collected urine samples of CAD patients (n = 41) age 18-65 years and gender matched healthy controls (n = 41). We isolated uEVs using differential ultracentrifugation. Further, uEV samples were characterized by western blotting exosome markers (Flotillin, TSG, CD63, and CD9), nano tracking analysis, and transmission and scanning electron microscopy. A total of 508 proteins were identified by iTRAQ-based mass spectrometry. We observed protein expression levels of AZGP1, SEMG1/2, ORM1, IGL, SERPINA5, HSPG2, prosaposin, gelsolin, and CD59 were upregulated, and UMOD, KNG1, AMBP, prothrombin, and TF were downregulated. Protein-protein interactions, gene ontology and pathway analysis were performed to functionally annotate identified uEVs proteins. A novel uEVs differential protein signature is shown. On validating UMOD protein by ELISA in two clinically different CAD, stable-CAD patients had lower levels than healthy controls whereas recent myocardial infarction patients had lowest. Our findings suggest UMOD importance as early diagnostic biomarker. SIGNIFICANCE: Coronary artery disease is a chronic inflammatory disease caused by gradual deposition of cholesterol and fat along with other proteins to develop plaque inside arteries. This further leads to blockage of artery, heart attack and death. There are no identifiable early biomarkers to diagnose this. For the first time, we have identified the differentially expressed proteins isolated from non-invasive uEV of CAD patients compared to healthy controls by using MS Orbitrap and iTRAQ labelling of peptides. We have identified decreased levels of UMOD protein in CAD. These findings have been confirmed by ELISA. Furthermore, the levels of UMOD were observed as more highly decreased in recent myocardial infarction CAD patients, indicating the importance of this protein as an early diagnostic biomarker. Conclusively, our study represents a non-invasive urinary EVs trove of differentially expressed proteins in CAD. This will form a groundwork for understanding the pathophysiology of CAD and will help in future translational research utilizing uEVs.


Asunto(s)
Enfermedad de la Arteria Coronaria , Exosomas , Vesículas Extracelulares , Infarto del Miocardio , Humanos , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Exosomas/metabolismo , Proteómica , Enfermedad de la Arteria Coronaria/diagnóstico , Enfermedad de la Arteria Coronaria/metabolismo , Vesículas Extracelulares/metabolismo , Biomarcadores/metabolismo , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/metabolismo
9.
Environ Monit Assess ; 195(12): 1459, 2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-37950807

RESUMEN

Lake sediments can provide valuable insights into anthropogenic disturbances such as intensive aquaculture and land use changes. These disturbances often manifest as elevated levels of nutrients and elements within the sediments. This paper uses several analytical techniques, i.e., FTIR (Fourier-transform infrared spectroscopy), XRD (X-ray diffraction), EDS (energy-dispersive X-ray spectroscopy), and SEM (scanning electron microscopy), to examine the elemental constituents of lake sediments, along with their relative mineral abundances and surface morphology. The selected freshwater lakes are from the Central Gangetic Plain. The analysis provides a "fingerprint" of geogenic and biogenic mineral constituents of the sediments. Physicochemical, mineralogical, and elemental analysis shows that intensive aquaculture activities in lake alter the sediment chemistry as evidenced by the increase in pH, organic carbon, organic matter, and total phosphorus which is not observed in the lake where aquaculture is prohibited. Freshwater lake sediment is characterized by a high content of biogenic silica and carbonate minerals. The variations in sediment nutrients and mineral fluxes of the selected lakes are mainly attributed to diverse anthropogenic pressures, differences in lake productivity, and the overall ecological condition of the lakes. In the selected three lakes, major variation was reported in the autochthonous sediments in comparison to the allochthonous sediments. The study concludes that catchment and biotic deposit variations in the lakes cannot be evened out by in-lake mixing mechanisms due to variations in the terrigenous and pelagic deposits of the lake. The results highlight the importance of studying annual fluctuations and spatial variations in geogenic and biogenic mineral particle fluxes in lakes. Such investigations provide valuable insights into the annual dynamics of minerals within lakes, contributing to a more comprehensive understanding of their behavior and distribution.


Asunto(s)
Efectos Antropogénicos , Lagos , Lagos/química , Monitoreo del Ambiente/métodos , Fósforo/análisis , Minerales/análisis , Sedimentos Geológicos/química , China
10.
Sci Rep ; 13(1): 21021, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38030709

RESUMEN

Pancreatic Neuroendocrine tumors (PanNET) are challenging to diagnose and often detected at advanced stages due to a lack of specific and sensitive biomarkers. This study utilized proteomics as a valuable approach for cancer biomarker discovery; therefore, mass spectrometry-based proteomic profiling was conducted on plasma samples from 12 subjects (3 controls; 5 Grade I, 4 Grade II PanNET patients) to identify potential proteins capable of effectively distinguishing PanNET from healthy controls. Data are available via ProteomeXchange with the identifier PXD045045. 13.2% of proteins were uniquely identified in PanNET, while 60% were commonly expressed in PanNET and controls. 17 proteins exhibiting significant differential expression between PanNET and controls were identified with downstream analysis. Further, 5 proteins (C1QA, COMP, HSP90B1, ITGA2B, and FN1) were selected by pathway analysis and were validated using Western blot analysis. Significant downregulation of C1QA (p = 0.001: within groups, 0.03: control vs. grade I, 0.0013: grade I vs. grade II) and COMP (p = 0.011: within groups, 0.019: control vs grade I) were observed in PanNET Grade I & II than in controls. Subsequently, ELISA on 38 samples revealed significant downregulation of C1QA and COMP with increasing disease severity. This study shows the potential of C1QA and COMP in the early detection of PanNET, highlighting their role in the search for early-stage (Grade-I and Grade-II) diagnostic markers and therapeutic targets for PanNET.


Asunto(s)
Tumores Neuroendocrinos , Neoplasias Pancreáticas , Humanos , Tumores Neuroendocrinos/patología , Neoplasias Pancreáticas/patología , Proteómica , Detección Precoz del Cáncer , Biomarcadores de Tumor/análisis
11.
Front Neurosci ; 17: 1174951, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38033547

RESUMEN

Background: Parkinson's disease (PD) is an increasingly common neurodegenerative condition, which causes movement dysfunction and a broad range of non-motor symptoms. There is no molecular or biochemical diagnosis test for PD. The miRNAs are a class of small non-coding RNAs and are extensively studied owing to their altered expression in pathological states and facile harvesting and analysis techniques. Methods: A total of 48 samples (16 each of PD, aged-matched, and young controls) were recruited. The small extracellular vesicles (sEVs) were isolated and validated using Western blot, transmission electron microscope, and nanoparticle tracking analysis. Small RNA isolation, library preparation, and small RNA sequencing followed by differential expression and targeted prediction of miRNA were performed. The real-time PCR was performed with the targeted miRNA on PD, age-matched, and young healthy control of plasma and plasma-derived sEVs to demonstrate their potential as a diagnostic biomarker. Results: In RNA sequencing, we identified 14.89% upregulated (fold change 1.11 to 11.04, p < 0.05) and 16.54% downregulated (fold change -1.04 to -7.28, p < 0.05) miRNAs in PD and controls. Four differentially expressed miRNAs (miR-23b-3p, miR-29a-3p, miR-19b-3p, and miR-150-3p) were selected. The expression of miR-23b-3p was "upregulated" (p = 0.002) in plasma, whereas "downregulated" (p = 0.0284) in plasma-derived sEVs in PD than age-matched controls. The ROC analysis of miR-23b-3p revealed better AUC values in plasma (AUC = 0.8086, p = 0.0029) and plasma-derived sEVs (AUC = 0.7278, p = 0.0483) of PD and age-matched controls. Conclusion: We observed an opposite expression profile of miR-23b-3p in PD and age-matched healthy control in plasma and plasma-derived sEV fractions, where the expression of miR-23b-3p is increased in PD plasma while decreased in plasma-derived sEV fractions. We further observed the different miR-23b-3p expression profiles in young and age-matched healthy control.

12.
BMC Med ; 21(1): 335, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37667227

RESUMEN

BACKGROUND: Parkinson's disease is generally asymptomatic at earlier stages. At an early stage, there is an extensive progression in the neuropathological hallmarks, although, at this stage, diagnosis is not possible with currently available diagnostic methods. Therefore, the pressing need is for susceptibility risk biomarkers that can aid in better diagnosis and therapeutics as well can objectively serve to measure the endpoint of disease progression. The role of small extracellular vesicles (sEV) in the progression of neurodegenerative diseases could be potent in playing a revolutionary role in biomarker discovery. METHODS: In our study, the salivary sEV were efficiently isolated by chemical precipitation combined with ultrafiltration from subjects (PD = 70, healthy controls = 26, and prodromal PD = 08), followed by antibody-based validation with CD63, CD9, GAPDH, Flotillin-1, and L1CAM. Morphological characterization of the isolated sEV through transmission electron microscopy. The quantification of sEV was achieved by fluorescence (lipid-binding dye-labeled) nanoparticle tracking analysis and antibody-based (CD63 Alexa fluor 488 tagged sEV) nanoparticle tracking analysis. The total alpha-synuclein (α-synTotal) in salivary sEVs cargo was quantified by ELISA. The disease severity staging confirmation for n = 18 clinically diagnosed Parkinson's disease patients was done by 99mTc-TRODAT-single-photon emission computed tomography. RESULTS: We observed a significant increase in total sEVs concentration in PD patients than in the healthy control (HC), where fluorescence lipid-binding dye-tagged sEV were observed to be higher in PD (p = 0.0001) than in the HC using NTA with a sensitivity of 94.34%. In the prodromal PD cases, the fluorescence lipid-binding dye-tagged sEV concentration was found to be higher (p = 0.008) than in HC. This result was validated through anti-CD63 tagged sEV (p = 0.0006) with similar sensitivity of 94.12%. We further validated our findings with the ELISA based on α-synTotal concentration in sEV, where it was observed to be higher in PD (p = 0.004) with a sensitivity of 88.24%. The caudate binding ratios in 99mTc-TRODAT-SPECT represent a positive correlation with sEV concentration (r = 0.8117 with p = 0.0112). CONCLUSIONS: In this study, for the first time, we have found that the fluorescence-tagged sEV has the potential to screen the progression of disease with clinically acceptable sensitivity and can be a potent early detection method for PD.


Asunto(s)
Vesículas Extracelulares , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Fluorescencia , Diagnóstico Precoz , Anticuerpos , Lípidos
13.
Front Endocrinol (Lausanne) ; 14: 1233613, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37664835

RESUMEN

Introduction: We investigated the effects of hormonal and non-hormonal oral contraceptives (OCs) on bone mass, mineralization, composition, mechanical properties, and metabolites in pubertal female SD rats. Methods: OCs were given for 3-, and 7 months at human equivalent doses. The combined hormonal contraceptive (CHC) was ethinyl estradiol and progestin, whereas the non-hormonal contraceptive (NHC) was ormeloxifene. MicroCT was used to assess bone microarchitecture and BMD. Bone formation and mineralization were assessed by static and dynamic histomorphometry. The 3-point bending test, nanoindentation, FTIR, and cyclic reference point indentation (cRPI) measured the changes in bone strength and material composition. Bone and serum metabolomes were studied to identify potential biomarkers of drug efficacy and safety and gain insight into the underlying mechanisms of action of the OCs. Results: NHC increased bone mass in the femur metaphysis after 3 months, but the gain was lost after 7 months. After 7 months, both OCs decreased bone mass and deteriorated trabecular microarchitecture in the femur metaphysis and lumbar spine. Also, both OCs decreased the mineral: matrix ratio and increased the unmineralized matrix after 7 months. After 3 months, the OCs increased carbonate: phosphate and carbonate: amide I ratios, indicating a disordered hydroxyapatite crystal structure susceptible to resorption, but these changes mostly reversed after 7 months, indicating that the early changes contributed to demineralization at the later time. In the femur 3-point bending test, CHC reduced energy storage, resilience, and ultimate stress, indicating increased susceptibility to micro-damage and fracture, while NHC only decreased energy storage. In the cyclic loading test, both OCs decreased creep indentation distance, but CHC increased the average unloading slope, implying decreased microdamage risk and improved deformation resistance by the OCs. Thus, reduced bone mineralization by the OCs appears to affect bone mechanical properties under static loading, but not its cyclic loading ability. When compared to an age-matched control, after 7 months, CHC affected 24 metabolic pathways in bone and 9 in serum, whereas NHC altered 17 in bone and none in serum. 6 metabolites were common between the serum and bone of CHC rats, suggesting their potential as biomarkers of bone health in women taking CHC. Conclusion: Both OCs have adverse effects on various skeletal parameters, with CHC having a greater negative impact on bone strength.


Asunto(s)
Calcinosis , Fracturas Óseas , Femenino , Animales , Ratas , Humanos , Lactante , Ratas Sprague-Dawley , Densidad Ósea , Metaboloma , Anticonceptivos Orales
14.
In Silico Pharmacol ; 11(1): 20, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37575679

RESUMEN

Lung cancer is one of the most common and deadly types of cancer worldwide, and the epidermal growth factor receptor (EGFR) has emerged as a promising therapeutic target for the treatment of this disease. In this study, we designed a library of 1840 benzofuran-1,2,3-triazole hybrids and conducted pharmacophore-based screening to identify potential EGFR inhibitors. The 20 identified compounds were further evaluated using molecular docking and molecular dynamics simulations to understand their binding interactions with the EGFR receptor. In-silico ADME and toxicity studies were also performed to assess their drug-likeness and safety profiles. The results of this study showed the benzofuran-1,2,3-triazole hybrids BENZ-0454, BENZ-0143, BENZ-1292, BENZ-0335, BENZ-0332, and BENZ-1070 dock score of - 10.2, - 10, - 9.9, - 9.8, - 9.7, - 9.6, while reference molecule - 7.9 kcal/mol for EGFR (PDB ID: 4HJO) respectively. The molecular docking and molecular dynamics simulations revealed that the identified compounds formed stable interactions with the active site of the receptor, indicating their potential as inhibitors. The in-silico ADME and toxicity studies suggested that the compounds had good pharmacokinetic and safety profiles, further supporting their potential as therapeutic agents. Finally, performed DFT studies on the best-selected ligands to gain further insights into their electronic properties. The findings of this study provide important insights into the potential of benzofuran-1,2,3-triazole hybrids as promising EGFR inhibitors for the treatment of lung cancer. Overall, this study provides a valuable starting point for the development of novel EGFR inhibitors with improved efficacy and safety profiles. Supplementary Information: The online version contains supplementary material available at 10.1007/s40203-023-00157-1.

15.
Int J Biol Macromol ; 245: 125455, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37331537

RESUMEN

Through comparative analyses using BLASTp and BLASTn of the 25 target sequences, our research identified two unique post-transcriptional modifiers, Rv1509 and Rv2231A, which serve as distinctive and characteristic proteins of M.tb - the Signature Proteins. Here, we have characterized these two signature proteins associated with pathophysiology of M.tb which may prove to be therapeutically important targets. Dynamic Light Scattering and Analytical Gel Filtration Chromatography exhibited that Rv1509 exists as a monomer while Rv2231A as a dimer in solution. Secondary structures were determined using Circular Dichroism and further validated through Fourier Transform Infrared spectroscopy. Both the proteins are capable of withstanding a wide range of temperature and pH variations. Fluorescence spectroscopy based binding affinity experiments showed that Rv1509 binds to iron and may promote organism growth by chelating iron. In the case of Rv2231A, a high affinity for its substrate RNA was observed, which is facilitated in presence of Mg2+ suggesting it might have RNAse activity, supporting the prediction through in-silico studies. This is the first study on biophysical characterization of these two therapeutically important proteins, Rv1509 and Rv2231A, providing important insights into their structure -function correlations which are crucial for development of new drugs/ early diagnostics tools targeting these proteins.


Asunto(s)
Mycobacterium tuberculosis , Mycobacterium tuberculosis/metabolismo , Proteínas/metabolismo , Estructura Secundaria de Proteína , Temperatura , Hierro/metabolismo , Dicroismo Circular
16.
Biochim Biophys Acta Rev Cancer ; 1878(4): 188908, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37172650

RESUMEN

Cancer is a cause of high deaths worldwide and also a huge burden for the health system. Cancer cells have unique properties such as a high rate of proliferation, self-renewal, metastasis, and treatment resistance, therefore, the development of novel diagnoses of cancers is a tedious task. Exosomes are secreted by virtually all cell types and have the ability to carry a multitude of biomolecules crucial for intercellular communication, hence, contributing a crucial part in the onset and spread of cancer. These exosomal components can be utilized in the development of markers for diagnostic and prognostic purposes for various cancers. This review emphasized primarily the following topics: exosomes structure and functions, isolation and characterization strategies of exosomes, the role of exosomal contents in cancer with a focus in particular on noncoding RNA and protein, exosomes, and the cancer microenvironment interactions, cancer stem cells, and tumor diagnosis and prognosis based on exosomes.


Asunto(s)
Exosomas , MicroARNs , Neoplasias , ARN Largo no Codificante , Humanos , Exosomas/metabolismo , Neoplasias/patología , MicroARNs/genética , Comunicación Celular , ARN Largo no Codificante/genética , Microambiente Tumoral/genética
17.
Int J Biochem Cell Biol ; 160: 106422, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37172928

RESUMEN

Mesenchymal stem/stromal cell (MSC) spheroids generated in a three-dimensional (3D) culture system serve as a surrogate model that maintain stem cell characteristics since these mimic the in vivo behavior of cells and tissue more closely. Our study involved a detailed characterization of the spheroids generated in ultra-low attachment flasks. The spheroids were evaluated and compared for their morphology, structural integrity, viability, proliferation, biocomponents, stem cell phenotype and differentiation abilities with monolayer culture derived cells (2D culture). The in-vivo therapeutic efficacy of DPSCs derived from 2D and 3D culture was also assessed by transplanting them in an animal model of the critical-sized calvarial defect. DPSCs formed compact and well-organized multicellular spheroids when cultured in ultra-low attachment condition with superior stemness, differentiation, and regenerative abilities than monolayer cells. They maintained lower proliferative state and showed marked difference in the cellular biocomponents such as lipid, amide and nucleic acid between DPSCs from 2D and 3D cultures. The scaffold-free 3D culture efficiently preserves DPSCs intrinsic properties and functionality by maintaining them in the state close to the native tissues. The scaffold free 3D culture methods allow easy collection of a large number of multicellular spheroids of DPSCs and therefore, this can be adopted as a feasible and efficient method of generating robust spheroids for various in-vitro and in-vivo therapeutic applications.


Asunto(s)
Pulpa Dental , Células Madre Mesenquimatosas , Animales , Células Cultivadas , Esferoides Celulares , Células del Estroma , Diferenciación Celular
18.
Clin Implant Dent Relat Res ; 25(3): 540-548, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36940923

RESUMEN

INTRODUCTION: The study evaluates the levels of matrix metalloprotease-8 (MMP-8), and Cathepsin-K (CatK) in peri-implant crevicular fluid (PICF) among patients with immediate loaded (IL) and delayed-loaded (DL) implants at different time points to know the inflammation and osteogenic status. METHODS: The study population consisted of two groups (n = 25, each group) with a mean age of 28.7 ± 3.5 years, and PICF was collected. MMP-8 and CatK levels were quantified through ELISA. RESULTS: We observed the concentrations of inflammatory markers (MMP-8 and CatK) at three time points in the IL and DL groups. The mean concentration of MMP-8 in the IL group was 9468 ± 1230 pg/mL, 5547 ± 1088 pg/mL, and 7248 ± 1396 pg/mL at 2 weeks, 3 months, and 12 months, respectively; while in the DL group was 10 816 ± 779.7 pg/mL, 9531 ± 1245 pg/mL, and 9132 ± 1265 pg/mL at 2 weeks, 3 and 12 months, respectively. The mean concentration of Cat-K in the IL group was observed at 422.1 ± 36.46 pg/mL, 242.9 ± 25.87 pg/mL, and 469 ± 75.38 pg/mL at 2 weeks, 3, and 12 months, whereas in the DL group was 654.6 ± 152.9 pg/mL, 314.7 ± 28.29 pg/mL, and 539.8 ± 115.1 pg/mL at 2 weeks, 3 months and 12 months, respectively. CONCLUSION: In this study, the levels of CatK and MMP-8 levels decline at 12 months in both groups, and the IL group shows lower values compared to the DL group; however, no significant changes were observed after analyses were adjusted for multiple comparisons (p > 0.025). Therefore, there is not much difference observed in the inflammation process between immediate and delayed loading. (Clinical trial identifier: CTRI/2017/09/009668).


Asunto(s)
Implantes Dentales , Carga Inmediata del Implante Dental , Humanos , Metaloproteinasa 8 de la Matriz/análisis , Inflamación , Osteogénesis , Líquido del Surco Gingival/química
19.
Front Endocrinol (Lausanne) ; 14: 1130003, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36926021

RESUMEN

Introduction: In obese humans, Coleus forskohlii root extract (CF) protects against weight gain owing to the presence of forskolin, an adenylate cyclase (AC) activator. As AC increases intracellular cyclic adenosine monophosphate (cAMP) levels in osteoblasts that has an osteogenic effect, we thus tested the skeletal effects of a standardized CF (CFE) in rats. Methods: Concentrations of forskolin and isoforskolin were measured in CFE by HPLC. CFE and forskolin (the most abundant compound present in CFE) were studied for their osteogenic efficacy in vitro by alkaline phosphatase (ALP), cAMP and cyclic guanosine monophosphate (cGMP) assays. Femur osteotomy model was used to determine the osteogenic dose of CFE. In growing rats, CFE was tested for its osteogenic effect in intact bone. In adult ovariectomized (OVX) rats, we assessed the effect of CFE on bone mass, strength and material. The effect of forskolin was assessed in vivo by measuring the expression of osteogenic genes in the calvarium of rat pups. Results: Forskolin content in CFE was 20.969%. CFE increased osteoblast differentiation and intracellular cAMP and cGMP levels in rat calvarial osteoblasts. At 25 mg/kg (half of human equivalent dose), CFE significantly enhanced calcein deposition at the osteotomy site. In growing rats, CFE promoted modeling-directed bone formation. In OVX rats, CFE maintained bone mass and microarchitecture to the level of sham-operated rats. Moreover, surface-referent bone formation in CFE treated rats was significantly increased over the OVX group and was comparable with the sham group. CFE also increased the pro-collagen type-I N-terminal propeptide: cross-linked C-telopeptide of type-I collagen (PINP : CTX-1) ratio over the OVX rats, and maintained it to the sham level. CFE treatment decreased the OVX-induced increases in the carbonate-to-phosphate, and carbonate-to-amide-I ratios. CFE also prevented the OVX-mediated decrease in mineral crystallinity. Nanoindentation parameters, including modulus and hardness, were decreased by OVX but CFE maintained these to the sham levels. Forskolin stimulated ALP, cAMP and cGMP in vitro and upregulated osteogenic genes in vivo. Conclusion: CFE, likely due to the presence of forskolin displayed a bone-conserving effect via osteogenic and anti-resorptive mechanisms resulting in the maintenance of bone mass, microarchitecture, material, and strength.


Asunto(s)
Osteogénesis , Plectranthus , Femenino , Ratas , Humanos , Animales , Colforsina/farmacología , Fosfatasa Alcalina , Ovariectomía/efectos adversos , Colágeno
20.
ISA Trans ; 138: 650-669, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36898909

RESUMEN

The autonomous robot has been the attraction point among robotic researchers since the last decade by virtue of increasing demand of automation in defence and intelligent industries. In the current research, a modified flow direction optimization algorithm (MFDA) and firefly algorithm (FA) are hybridized and implemented on wheeled robots to encounter multi-target trajectory optimization with smooth navigation by negotiating obstacles present within the workspace. Here, a hybrid algorithm is adopted for designing the controller with consideration of navigational parameters. A Petri-Net controller is also aided with the developed controller to resolve any conflict during navigation. The developed controller has been investigated on WEBOTS and MATLAB simulation environments coupled with real-time experiments by considering Khepera-II robot as wheeled robot. Single robot- multi-target, multiple robot single target and multiple robots-multiple target problems are tackled during the investigation. The outcomes of simulation are verified through real-time experimental outcomes by comparing results. Further, the proposed algorithm is tested for its suitability, precision, and stability. Finally, the developed controller is tested against existing techniques for authentication of proposed technique, and significant improvements of an average 34.2% is observed in trajectory optimization and 70.6% in time consumption.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...