Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(22): 16218-16233, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38804505

RESUMEN

The micellization of choline-based anionic surface-active ionic liquids (SAILs) having lauroyl sarcosinate [Sar]-, dodecylsulfate [DS]-, and deoxycholate [Doc]- as counter-ions was investigated in an aqueous medium. Density functional theory (DFT) was employed to investigate the net interactional energy (Enet), extent of non-covalent interactions, and band gap of the choline-based SAILs. The critical micelle concentration (cmc) along with various parameters related to the surface adsorption, counter-ion binding (ß), and polarity of the cores of the micelles were deduced employing surface tension measurements, conductometric titrations and fluorescence spectroscopy, respectively. A dynamic light scattering (DLS) system equipped with zeta-potential measurement set-up and small-angle neutron scattering (SANS) were used to predict the size, zeta-potential, and morphology, respectively, of the formed micelles. Thermodynamic parameters such as standard Gibb's free energy and standard enthalpy change of micellization were calculated using isothermal titration calorimetry (ITC). Upon comparing with sodium salt analogues, it was established that the micellization was predominantly governed by the extent of hydration of [Cho]+, the head groups of the respective anions, and the degree of counter-ion binding (ß). Considering the concentration dependence of the enzyme-SAIL interactions, aqueous solutions of the synthesized SAILs at two different concentrations (below and above the cmc) were utilized as the medium for testing the enzymatic activity of cellulase. The activity of cellulase was found to be ∼7- to ∼13-fold higher compared to that observed in buffers in monomeric solutions of the SAILs and followed the order: [Cho][Sar] > [Cho][DS] > [Cho][Doc]. In the micellar solution, a ∼4- to 5-fold increase in enzymatic activity was observed.


Asunto(s)
Celulasa , Colina , Líquidos Iónicos , Micelas , Agua , Líquidos Iónicos/química , Colina/química , Colina/análogos & derivados , Celulasa/química , Celulasa/metabolismo , Agua/química , Termodinámica , Tensoactivos/química , Teoría Funcional de la Densidad
2.
Int J Pharm ; 658: 124206, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38734276

RESUMEN

The constraints associated with current cancer therapies have inspired scientists to develop advanced, precise, and safe drug delivery methods. These delivery systems boost treatment effectiveness, minimize harm to healthy cells, and combat cancer recurrence. To design advanced drug delivery vehicle with these character, in the present manuscript, we have designed a self-healing and injectable hybrid hydrogel through synergistically interacting metal organic framework, CuBTC with the poly(vinyl alcohol) (PVA). This hybrid hydrogel acts as a localized drug delivery system and was used to encapsulate and release the anticancer drug 5-Fluorouracil selectively at the targeted site in response to the physiological pH. The hydrogel was formed through transforming the gaussian coil like matrix of PVA-CuBTC into a three-dimensional network of hydrogel upon the addition of crosslinker; borax. The biocompatible character of the hydrogel was confirmed through cell viability test. The biocompatible hybrid hydrogel then was used to encapsulate and studied for the pH responsive release behavior of the anti-cancer drug, 5-FU. The in vitro cytotoxicity of the drug-loaded hydrogel was evaluated against MCF-7 and HeLa cells. The study confirms that the hybrid hydrogel is effective for targeted and sustained release of anticancer drugs at cancer sites.


Asunto(s)
Neoplasias de la Mama , Supervivencia Celular , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Fluorouracilo , Hidrogeles , Estructuras Metalorgánicas , Alcohol Polivinílico , Humanos , Fluorouracilo/administración & dosificación , Fluorouracilo/química , Fluorouracilo/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Células MCF-7 , Células HeLa , Supervivencia Celular/efectos de los fármacos , Hidrogeles/química , Femenino , Estructuras Metalorgánicas/química , Alcohol Polivinílico/química , Sistemas de Liberación de Medicamentos/métodos , Concentración de Iones de Hidrógeno , Portadores de Fármacos/química , Antimetabolitos Antineoplásicos/administración & dosificación , Antimetabolitos Antineoplásicos/química , Antimetabolitos Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Antineoplásicos/farmacología
3.
ACS Appl Bio Mater ; 7(5): 3110-3123, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38620030

RESUMEN

Transdermal drug delivery systems (TDDS) are a promising and innovative approach for breast cancer treatment, offering advantages such as noninvasiveness, potential for localized and prolonged drug delivery while minimizing systemic side effects through avoiding first-pass metabolism. Utilizing the distinctive characteristics of hydrogels, such as their biocompatibility, versatility, and higher drug loading capabilities, in the present work, we prepared ionic hydrogels through synergistic interaction between ionic liquids (ILs), choline alanine ([Cho][Ala]), and choline proline ([Cho][Pro]) with oleic acid (OA). ILs used in the study are biocompatible and enhance the solubility of 5-fluorouracil (5-FU), whereas OA is a known chemical penetration enhancer. The concentration-dependent (OA) change in morphological aggregates, that is, from cylindrical micelles to worm-like micelles to hydrogels was formed with both ILs and was characterized by SANS measurement, whereas the interactions involved were confirmed by FTIR spectroscopy. The hydrogels have excellent mechanical properties, which studied by rheology and their morphology through FE-SEM analysis. The in vitro skin permeation study revealed that both hydrogels penetrated 255 times ([Cho][Ala]) and 250 times ([Cho][Pro]) more as compared to PBS after 48 h. Those ionic hydrogels exhibited the capability to change the lipid and keratin arrangements within the skin layer, thereby enhancing the transdermal permeation of the 5-FU. Both ionic hydrogels exhibit excellent biocompatibility with normal cell lines (L-132 cells) as well as cancerous cell lines (MCF-7 cells), demonstrating over 92% cell viability after 48 h in both cell lines. In vitro, the cytotoxicity of the 5-FU-loaded hydrogels was evaluated on MCF-7 and HeLa cell lines. These results indicate that the investigated biocompatible and nontoxic ionic hydrogels enable the transdermal delivery of hydrophilic drugs, making them a viable option for effectively treating breast cancer.


Asunto(s)
Administración Cutánea , Materiales Biocompatibles , Neoplasias de la Mama , Supervivencia Celular , Fluorouracilo , Hidrogeles , Ensayo de Materiales , Fluorouracilo/química , Fluorouracilo/farmacología , Fluorouracilo/administración & dosificación , Hidrogeles/química , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Femenino , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Supervivencia Celular/efectos de los fármacos , Animales , Tamaño de la Partícula , Sistemas de Liberación de Medicamentos , Ensayos de Selección de Medicamentos Antitumorales , Células MCF-7 , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Antimetabolitos Antineoplásicos/química , Antimetabolitos Antineoplásicos/administración & dosificación , Antimetabolitos Antineoplásicos/farmacología
4.
Int J Pharm ; 657: 124147, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38657715

RESUMEN

The present study investigated the feasibility of fabricating self-assembled liposomes, LeciPlex®, a phospholipid-based vesicular nanocarrier using cationic, anionic, and nonionic stabilizers. The phospholipid investigated was soy phosphatidylcholine and the nano-precipitation method based on solvent diffusion was applied as the fabrication technique of liposomes in this study. The effects of various formulation variables, such as lipid and stabilizer concentration, total solid concentration, and solvent type on the self-assembly of vesicles were studied for physical characterization including particle size analysis, differential scanning calorimetry, viscosity, optical transmittance, transmission electron microscopy, and small angle neutron scattering. All three LeciPlex® systems exhibited a direct relationship between particle size and phospholipid concentration. The two categoric variables, solvent, and stabilizer used to prepare LeciPlex® demonstrated a significant effect on particle size for all three LeciPlex® systems. Small angle neutron scattering, and optical transmittance confirmed the formation of micellar systems at a phospholipid: stabilizer ratio of 1:2 and vesicular systems at a ratio of 2:1 for the systems stabilized with anionic and nonionic surfactants. In contrast to this, the LeciPlex® formed with the cationic stabilizer Dioctadecyldimethylammonium bromide (DODAB), formed vesicles at both ratios. From these investigations, it was clear that the formulation space for LeciPlex® was diversified by the addition of cationic, anionic, and non-ionic stabilizers.


Asunto(s)
Liposomas , Tamaño de la Partícula , Compuestos de Amonio Cuaternario , Liposomas/química , Compuestos de Amonio Cuaternario/química , Tensoactivos/química , Viscosidad , Solventes/química , Fosfolípidos/química , Química Farmacéutica/métodos , Fosfatidilcolinas/química , Rastreo Diferencial de Calorimetría , Microscopía Electrónica de Transmisión , Composición de Medicamentos/métodos , Portadores de Fármacos/química , Dispersión del Ángulo Pequeño , Nanopartículas/química
5.
Phys Chem Chem Phys ; 25(33): 22130-22144, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37563993

RESUMEN

Small-angle neutron scattering (SANS) and dynamic light scattering (DLS) experiments have been carried out to study the competitive effects of NaCl and sodium dodecyl sulfate (SDS) surfactant on the evolution of the structure and interactions in a silica nanoparticle-Bovine serum albumin (BSA) protein system. The unique advantage of contrast-matching SANS has been utilized to particularly probe the structure of nanoparticles in the multi-component system. Silica nanoparticles and BSA protein both being anionic remain largely individual in the solution without significant adsorption. The non-adsorbing nature of protein is known to cause depletion attraction between nanoparticles at higher protein concentrations. The nanoparticles undergo immediate aggregation in the nanoparticle-BSA system on the addition of a small amount of salt [referred as the critical salt concentration (CSC)], much less than that required to induce aggregation in a pure nanoparticle dispersion. The salt ions screen the electrostatic repulsion between the nanoparticles, whereby the BSA-induced depletion attraction dominates the system and contributes to the nanoparticle aggregation of a mass fractal kind of morphology. Further, the addition of SDS in this system interestingly suppresses nanoparticle aggregation for salt concentrations lower than the CSC. The presence of SDS gives rise to additional electrostatic repulsion in the system by binding with the BSA protein via electrostatic and hydrophobic interactions. For salt concentrations higher than the CSC, the formation of clusters of nanoparticles is inevitable even in the presence of protein-surfactant complexes, but the mass fractal kind of branched aggregates transform to surface fractals. This has been attributed to the BSA-SDS complex induced depletion attraction along with salt-driven screening of electrostatic repulsion. Thus, the interplay of depletion and electrostatic and hydrophobic interactions has been utilized to tune the structures formed in a multicomponent silica nanoparticle-BSA-SDS/NaCl system.


Asunto(s)
Nanopartículas , Surfactantes Pulmonares , Tensoactivos/química , Cloruro de Sodio , Nanopartículas/química , Albúmina Sérica Bovina/química , Lipoproteínas , Dióxido de Silicio/química
6.
Langmuir ; 39(33): 11582-11595, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37552854

RESUMEN

The aggregation behavior of the surface-active ionic liquid (SAIL), 3-(2-(hexadecyloxy)-2-oxoethyl)-1-methyl-1H-imidazol-3-ium chloride, [C16Emim][Cl], and a gemini surfactant (GS) (14-2-14) in the whole mole fraction range has been investigated in an aqueous medium employing various techniques. Experimentally obtained values of critical aggregation concentration (cac) are in good agreement with the theoretical cac values obtained using Clint's equation. Rubingh's model has been employed to evaluate the extent of synergistic interactions between two components, which has been found to be dependent upon the composition of a mixture of surfactants. The polarity index, hydrodynamic diameter (Dh), zeta potential (ζ-Pot.), and morphology of the aggregates have been found to be dependent upon the extent of hydrophobic as well as dipolar interactions and the degree of counterion binding governed by the content of the GS in mixed aggregates. Thermodynamic parameters evaluated employing isothermal titration calorimetry have revealed the aggregation as an entropy-driven process. Density functional theory calculations provide a detailed account of the SAIL-GS interactions at the molecular level. The reduced density gradient (RDG) along with the calculated isosurfaces asserts that the dominant interactions are noncovalent interactions. Furthermore, the enzymology of cytochrome-c in the aqueous SAIL-GS aggregated systems has been investigated and a two-fold increase in the enzyme activity has been observed in the aggregates formed by the GS as compared to that in buffer.

7.
Soft Matter ; 18(2): 434-445, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34908081

RESUMEN

The structures of the complexes of anionic silica nanoparticle (size ∼ 16 nm)-lysozyme (cationic) protein, tuned by the addition of the anionic surfactant sodium dodecyl sulfate (SDS), have been investigated by dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The unique advantage of contrast variation SANS has been used to probe the role of individual components in binary and ternary systems. The cationic lysozyme protein (at pH ∼ 7) adsorbs on the anionic silica nanoparticles and forms mass fractal aggregates due to the strong attractive interaction, whereas similarly charged SDS does not interact physically with silica nanoparticles. The presence of SDS, however, remarkably affects the nanoparticle-protein interactions via binding with the oppositely charged segments of lysozyme. In general, the SDS-lysozyme complexes possess a variety of structures (e.g., insoluble complexes of Ly(DS)8, crystalline structure, or micelle-like structure) depending on the surfactant-to-protein molar ratio (S/P). In the ternary system (HS40-lysozyme-SDS), lysozyme preferentially binds with SDS, instead of directly to nanoparticles. At low S/Ps (0 ≤ S/P ≤ 10), the SDS concentration is not enough to fully neutralize the charge of lysozyme, leading to the formation of cationic SDS-lysozyme complex-mediated nanoparticle aggregation. The morphology of the nanoparticle-(lysozyme-SDS) complexes is also found to be mass fractal kind where the fractal dimension increases with increasing SDS concentration. At S/P > 10, there is sufficient SDS to fully neutralize the lysozyme in the absence of competing charges from the particle but it is at S/P = 50 before all lysozyme desorbs from the particle and binds completely to the overwhelming amount of SDS, creating an oppositely charged lysozyme-SDS complex, which is repelled from the particle.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Muramidasa , Dodecil Sulfato de Sodio , Tensoactivos
8.
Phys Rev E ; 104(1): L012603, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34412269

RESUMEN

Proteins are known to undergo denaturation and form different phases with varying physicochemical parameters. We report unusual stability of bovine serum albumin protein against commonly used denaturants (temperature and surfactant) in the charged reversal reentrant phase, caused by the multivalent counterions. Unlike monovalent counterions, which promote the denaturants' induced protein unfolding, the unfolding is restricted in the presence of multivalent ions. The observations are beyond the scope of general understanding of protein unfolding and are believed to be governed by ion-ion correlations driven strong condensation of the multivalent ions.

9.
Soft Matter ; 17(29): 6972-6984, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34236073

RESUMEN

The interaction of a bovine serum albumin (BSA) protein with the mixture of anionic sodium dodecyl sulfate (SDS) and cationic dodecyltrimethylammonium bromide (DTAB) has been investigated by small-angle neutron scattering (SANS) and dynamic light scattering (DLS). Both SDS and DTAB as individuals interact electrostatically as well as hydrophobically with BSA and form connected protein-decorated micelle like complexes in the aqueous solution, in which the well-defined surfactant micelles are organized along the randomly distributed unfolded polypeptide chain of the protein. The protein-surfactant interaction has been tuned by adding different molar mixtures of SDS and DTAB in BSA aqueous solution. It is found that a lower molar fraction of either surfactant in the protein-mixed surfactant complexes results in the formation of a connected protein-decorated micelle structure similar to those of pure surfactants. As the molar fraction of one of the surfactants in the mixture approaches the equimolar fraction, the structure formed by the protein-mixed surfactant is very different from the connected protein-decorated micelle like structure. Different microstructures of BSA-mixed surfactant complexes are formed, mostly governed by the structure of mixed surfactants arising from the strong electrostatic interaction of oppositely charged components. In this case, unfolded proteins wrap the structures of mixed surfactants around their surface. Along with the connected protein-decorated micelle like structure, rod-like and bilayer vesicles of protein-surfactant complexes are formed at different molar fractions of mixed surfactants.


Asunto(s)
Albúmina Sérica Bovina , Tensoactivos , Animales , Aniones , Cationes , Bovinos , Humanos , Dodecil Sulfato de Sodio
10.
Phys Chem Chem Phys ; 23(27): 14818-14829, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34212952

RESUMEN

Polymer-mediated interactions such as DNA-protein binding, protein aggregation, and filler reinforcement in polymers play crucial roles in many important biological and industrial processes. In this work, we report a detailed investigation of interactions between nanoparticles in the presence of high volume fractions of an adsorbing polymer. Small-angle X-ray scattering (SAXS) revealed the existence of a stable gel-like structure in the polymer-nanoparticle dispersion, whereby anchored polymer molecules on nanoparticles acted as bridging centres, while basic interactions between nanoparticles remained repulsive. Time-resolved SAXS measurements showed that the local volume fraction of nanoparticles increased during the drying of the dispersion owing to the shrinkage of the gel-like structure. Further, nanoparticle clusters in the dehydrated composite films showed percolated networks of nanoparticles, except for 5% loading that showed a phase-separated morphology as the volume fraction of nanoparticles remained lower than the percolation threshold. A significant restructuring of nanoparticle clusters occurred upon the hydration of nanocomposite films caused by the expansion of polymer networks induced by hydration forces. Temporal evolution of the volume fraction of nanoparticles during dehydration unveiled three distinct stages similar to the logistic growth function and this was attributed to the evaporation of free, intermediate, and bound water in the different stages. A plausible mechanism was elucidated based on the spring action analogy between anchored polymer chains and nanoparticles during hydration and dehydration processes.

11.
Chem Commun (Camb) ; 56(85): 13001-13004, 2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-32996921

RESUMEN

Self-assembly of cellulose nanocrystals (CNCs) doped with anisotropic gold nanorods (AuNRs) was studied by small-angle neutron scattering. Correlation distances and structured domains were analysed to determine the influence of CNC and AuNR concentration on structuring. The transfer of the nematic structure of CNCs to AuNRs is explained in terms of an entropy-driven evolution from an isotropic to a cholesteric phase, with small nematic domains already present in the "isotropic" phase in equilibrium with the chiral nematic phase.

12.
Nanoscale ; 12(29): 15652-15662, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32496493

RESUMEN

In this work, we identify and characterize a new intriguing capability of carboxylated cellulose nanofibrils that could be exploited to design smart nanomaterials with tuned response properties for specific applications. Cellulose nanofibrils undergo a multivalent counter-ion induced re-entrant behavior at a specific multivalent metal salt concentration. This effect is manifested as an abrupt increase in the strength of the hydrogel that returns upon a further increment of salt concentration. We systematically study this phenomenon using dynamic light scattering, small-angle X-ray scattering, and molecular dynamics simulations based on a reactive force field. We find that the transitions in the nanofibril microstructure are mainly because of the perturbing actions of multivalent metal ions that induce conformational changes of the nanocellulosic chains and thus new packing arrangements. These new aggregation states also cause changes in the thermal and mechanical properties as well as wettability of the resulting films, upon water evaporation. Our results provide guidelines for the fabrication of cellulose-based films with variable properties by the simple addition of multivalent ions.

13.
RSC Adv ; 10(21): 12460-12468, 2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35497608

RESUMEN

Polymeric supports from renewable resources such as cellulose nanomaterials are having a direct impact on the development of heterogenous sustainable catalysts. Recently, to increase the potentiality of these materials, research has been oriented towards novel functionalization possibilities. In this study, to increase the stability of cellulose nanofiber films as catalytic supports, by limiting the solubility in water, we report the synthesis of new hybrid catalysts (HC) based on silver, gold, and platinum nanoparticles, and the corresponding bimetallic nanoparticles, supported on cellulose nanofibers (CNFs) cross-linked with borate ions. The catalysts were prepared from metal precursors reduced by the CNFs in an aqueous suspension. Metal nanoparticles supported on CNFs with a spherical shape and a mean size of 9 nm were confirmed by TEM, XRD, and SAXS. Functionalized films of HC-CNFs were obtained by adding a borate solution as a cross-linking agent. Solid-state 11B NMR of films with different cross-linking degrees evidenced the presence of four different boron species of which the bis-chelate is responsible for the cross-linking of the CNFs. Also, it may be concluded that the bis-chelate and the mono-chelates modify the microstructure of the film increasing the water uptake and enhancing the catalytic activity in the reduction of 4-nitrophenol.

14.
RSC Adv ; 10(60): 36531-36538, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35517941

RESUMEN

This article proposes a method to produce bio-elastomer nanocomposites, based on polyfarnesene or polymyrcene, reinforced with surface-modified graphene oxide (GO). The surface modification is performed by grafting alkylamines (octyl-, dodecyl-, and hexadecylamine) onto the surface of GO. The successful grafting was confirmed via spectroscopic (FTIR and Raman) and X-ray diffraction techniques. The estimated grafted amines appear to be around 30 wt%, as calculated via thermogravimetric analysis, increasing the inter-planar spacing among the nanosheets as a function of alkyl length in the amine. The resulting modified GOs were then used to prepare bio-elastomer nanocomposites via in situ coordination polymerization (using a ternary neodymium-based catalytic system), acting as reinforcing additives of polymyrcene and polyfarnesene. We demonstrated that the presence of the modified GO does not affect significantly the catalytic activity, nor the microstructure-control of the catalyst, which led to high cis-1,4 content bio-elastomers (>95%). Moreover, we show via rheometry that the presence of the modified-GO expands the capacity of the elastomer to store deformation or applied stress, as well as exhibit an activation energy an order of magnitude higher.

15.
Phys Rev E ; 102(6-1): 062601, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33465948

RESUMEN

The interaction of nanoparticles with surfactants is extensively used in a wide range of applications from enhancing colloidal stability to phase separation processes as well as in the synthesis of noble functional materials. The interaction is highly specific depending on the charged nature of the surfactant. In the case of nonionic surfactants, the micelles adsorb on the surface of nanoparticles. The adsorption of nonionic surfactant C12E10 as a function of surfactant concentration for two different sizes of anionic silica nanoparticles (16 and 27 nm) has been examined using dynamic light scattering (DLS) and small-angle neutron scattering (SANS). SANS measurements have been carried out under different contrast-matched conditions, where nanoparticles, as well as surfactant micelles, have been contrast-matched to the solvent. The adsorption of micelles is determined from the contrast-matched condition of silica nanoparticles with the solvent. SANS data under surfactant contrast-matched condition suggest that there is no modification in the structure and/or interaction of the silica nanoparticles in presence of nonionic micelles. The adsorption of micelles on nanoparticles is found to follow an exponential behavior with respect to the surfactant concentration. These results are consistent with the variation of hydrodynamic size of nanoparticle-surfactant system in DLS. The study on different-sized nanoparticles shows that the lower curvature enhances the packing fraction whereas the loss of surface-to-volume ratio suppresses the fraction of adsorbed micelles with the increase in the nanoparticle size. The adsorption coefficient has higher value for the larger size of the nanoparticles. In the mixed system of two sizes of nanoparticles, no preferential selectivity of micelle adsorption is observed.

16.
Nanoscale ; 11(46): 22413-22422, 2019 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-31738353

RESUMEN

The deposition of a thin layer of graphene oxide onto cellulose nanofibril membranes, to form CNF-GO layered-composite membranes, dramatically enhances their wet-mechanical stability, water flux and capacity to adsorb water pollutants (P. Liu, C. Zhu and A. P. Mathew, J. Hazard. Mater., 2019, 371, 484-493). In this work, we studied in real time the behavior of these layered membranes during filtration of water and metal ion solutions by means of in situ SAXS and reactive molecular dynamics (ReaxFF) computational simulations. SAXS confirms that the GO layers limit the swelling and structural deformations of CNFs during filtration of aqueous solutions. Moreover, during filtration of metal ion solutions, the connection of the CNF-GO network becomes highly complex mass-fractal like, with an increment in the correlation length. In addition, after ion adsorption, the SAXS data revealed apparent formation of nanoparticles during the drying stage and particle size increase as a function of time during drying. The molecular dynamics simulations, on the other hand, provide a deep insight into the assembly of both components, as well as elucidating the motion of the metal ions that potentially lead to the formation of metal clusters during adsorption, confirming the synergistic behavior of GO and CNFs for water purification applications.

17.
Rev Sci Instrum ; 90(11): 113301, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31779428

RESUMEN

We have devised an experimental method and apparatus for the simultaneous nondestructive determination of the absolute ion number, ion kinetic energy, and length of bunches of charged particles. We have built and operated a corresponding electronic detector that is based on induced charges and their subsequent low-noise amplification at cryogenic temperatures. We have performed measurements with bunches of low-energy highly charged ions from an electron-beam ion source that show the capability of the methods and their implementation. We discuss requirements for, and applications of, such detectors with a particular view on the obtainable information and their sensitivity.

18.
Langmuir ; 35(30): 9867-9877, 2019 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-31271288

RESUMEN

Sodium dodecyl sulfate (SDS) is a well-known anionic surfactant that forms micelles in various solvents including supercooled sugar-urea melt. Here, we explore the application of contrast variation small-angle X-ray scattering (SAXS) in discerning the structure and interactions of SDS micelles in aqueous solution and in a room-temperature supercooled solvent. The SAXS patterns can be analyzed in terms of a core-shell ellipsoid model. For aqueous SDS micelles, at low volume fractions, the features due to intermicellar interaction, S(q), in the SAXS pattern are poorly resolved because of the prominent contribution from shell scattering. Increasing the electron density of the solvent by the addition of the urea or fructose-urea mixture (at a weight ratio of 6:4) permits the systematic variation of shell scattering without influencing the structure drastically. For a 10% solution of SDS in water, the contribution from the shell can be completely masked by the addition of 40% urea or fructose-urea mixture. The fructose-urea mixture is a preferred additive as it can vary the scattering length density over a wide range and serves as a matrix to form supercooled micelles. The structural parameters of micelles in supercooled fructose-urea melt are obtained from contrast variation SAXS, small-angle neutron scattering, and high-resolution transmission electron microscopy.

19.
Biomacromolecules ; 20(5): 2123-2134, 2019 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-30908911

RESUMEN

The evolution of interactions in the bovine serum albumin (BSA) protein solution on addition of mono and multivalent (di, tri and tetra) counterions has been studied using small-angle neutron scattering (SANS), dynamic light scattering (DLS) and ζ-potential measurements. It is found that in the presence of mono and divalent counterions, protein behavior can be well explained by DLVO theory, combining the contributions of screened Coulomb repulsion with the van der Waals attraction. The addition of mono or divalent salts in protein solution reduces the repulsive barrier and hence the overall interaction becomes attractive, but the system remains in one-phase for the entire concentration range of the salts, added in the system. However, contrary to DLVO theory, the protein solution undergoes a reentrant phase transition from one-phase to a two-phase system and then back to the one-phase system in the presence of tri and tetravalent counterions. The results show that tri and tetravalent (unlike mono and divalent) counterions induce short-range attraction between the protein molecules, leading to the transformation from one-phase to two-phase system. The two-phase is characterized by the fractal structure of protein aggregates. The excess condensation of these higher-valent counterions in the double layer around the BSA causes the reversal of charge of the protein molecules resulting into reentrant of the one-phase, at higher salt concentrations. The complete phase behavior with mono and multivalent ions has been explained in terms of the interplay of electrostatic repulsion and ion-induced short-range attraction between the protein molecules.


Asunto(s)
Albúmina Sérica Bovina/química , Cloruro de Aluminio/química , Cloruros/química , Dispersión Dinámica de Luz , Cloruro de Magnesio/química , Difracción de Neutrones , Concentración Osmolar , Conformación Proteica , Dispersión del Ángulo Pequeño , Electricidad Estática , Circonio/química
20.
Langmuir ; 35(6): 2289-2302, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30672300

RESUMEN

In this paper, we use dynamic light scattering in polarized and depolarized modes to determine the translational and rotational diffusion coefficients of concentrated rodlike cellulose nanocrystals in aqueous suspension. Within the range of studied concentrations (1-5 wt %), the suspension starts a phase transition from an isotropic to an anisotropic state as shown by polarized light microscopy and viscosity measurements. Small-angle neutron scattering measurements also confirmed the start of cellulose nanocrystal alignment and a decreasing distance between the cellulose nanocrystals with increasing concentration. As expected, rotational and translational diffusion coefficients generally decreased with increasing concentration. However, the translational parallel diffusion coefficient was found to show a local maximum at the onset of the isotropic-to-nematic phase transition. This is attributed to the increased available space for rods to move along their longitudinal axis upon alignment. This increased parallel diffusion coefficient thus confirms the general idea that rodlike particles gain translational entropy upon alignment while paying the price for losing rotational degrees of freedom. Once the concentration increases further, diffusion becomes more hindered even in the aligned regions due to a reduction in the rod separation distance. This leads once again to a decrease in translational diffusion coefficients. Furthermore, the relaxation rate for fast mode translational diffusion (parallel to the long particle axis) exhibited two regimes of relaxation behavior at concentrations where significant alignment of the rods is measured. We attribute this unusual dispersive behavior to two length scales: one linked to the particle length (at large wavevector q) and the other to a twist fluctuation correlation length (at low wavevector q) along the cellulose nanocrystal rods that is of a larger length when compared to the actual length of rods and could be linked to the size of aligned domains.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA