Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 377: 128946, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36958684

RESUMEN

L-malic acid (L-MA) is an industrially significant chemical with enormous potential. The fungal cell factories could be exploited to harvest it on large scales. In our study, Aspergillus wentii strain (MTCC 1901 T) was explored for L-MA production. Initially, the L-MA production was carried out using glucose with optimization of parameters influencing product accumulation (pH and CaCO3). The fermentation resulted in L-MA titer of 37.9 g/L with 0.39 g/g yield. Then, cassava peel waste (CPW) was used for L-MA production by separate hydrolysis and fermentation. Optimized acidic and enzymatic hydrolysis resulted in glucose release of 0.53 and 0.66 g/g CPW, respectively. The strain accumulated 20.9 g/L and 33.1 g/L L-MA with corresponding yields of 0.25 g/g and 0.34 g/g during batch cultivation using acid and enzyme hydrolysate, respectively. Finally, the produced L-MA was separated using an inexpensive solvent extraction method. Among various solvents used, n-butanol exhibited maximum L-MA extraction efficiency (31%).


Asunto(s)
Manihot , Fermentación , Glucosa , Hidrólisis
2.
Bioresour Technol ; 365: 128174, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36283672

RESUMEN

In the recent scenario, anthropogenic interventions have alarmingly disrupted climatic conditions. The persistent change in the climate necessitates carbon neutrality. Efficient ways of carbon capture and sequestration could be employed for sustainable product generation. Carbonic anhydrase (CA) is an enzyme that reversibly catalyzes the conversion of carbon dioxide to bicarbonate ions, further utilized by cells for metabolic processes. Hence, utilizing CA from microbial sources for carbon sequestration and the corresponding delivery of bio-renewables could be the eco-friendly approach. Consequently, the microbial CA and amine-based carbon capture chemicals are synergistically applied to enhance carbon capture efficiency and eventual utilization. This review comprehends recent developments coupled with engineering techniques, especially in microbial CA, to create integrated systems for CO2 sequestration. It envisages developing sustainable approaches towards mitigating environmental CO2 from industries and fossil fuels to generate bio-renewables and other value-added chemicals.


Asunto(s)
Anhidrasas Carbónicas , Anhidrasas Carbónicas/metabolismo , Dióxido de Carbono/metabolismo , Secuestro de Carbono , Combustibles Fósiles , Bicarbonatos
3.
Bioresour Technol ; 339: 125599, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34303095

RESUMEN

L-asparaginase shows great potential as a food enzyme to reduce acrylamide formation in fried and baked products. But for food applications, enzymes must be stable at high temperatures and have higher catalytic efficiency. These desirable characteristics are conferred by the immobilization of enzymes on a suitable matrix. The present study aimed to immobilize the L-asparaginase enzyme on magnetic nanoparticles to reduce acrylamide content in the food system. Immobilized preparations were characterized using SEM, TEM, FTIR, UV-spectrometry, and XRD diffraction analyses. These nanoparticles enhanced the thermal stability of the enzyme up to four-fold at 70 °C compared to the free enzyme. Kinetic parameters exhibited an increase in Vmax, Km, and catalytic efficiency by ~ 38% than the free counterpart. The immobilized preparations were reusable for up to five cycles. Moreover, their application in the pre-treatment coupled with blanching of potato chips led to a significant reduction (greater than 95%) of acrylamide formation.


Asunto(s)
Asparaginasa , Nanopartículas de Magnetita , Acrilamida , Asparaginasa/metabolismo , Catálisis , Estabilidad de Enzimas , Enzimas Inmovilizadas/metabolismo , Cinética
4.
Bioresour Technol ; 337: 125426, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34174767

RESUMEN

In the present study, we have explored the potential of newly isolated Aspergillus terreus BD strain, which can accumulate itaconic acid (IA) at higher temperature. The shake flask cultivation of thermotolerant strain with medium optimized using Box-Behnken Design at 45 °C resulted in IA accumulation of 28.9 g/L with yield of 0.27 g/g. The enzymatic saccharification of the synthetic food waste (SFW) consisting of potatoes, rice & noodles were optimized using Taguchi method of orthogonal array to maximize the release of fermentable sugar. The maximum glucose release of 0.60 g/g was achieved with 10% biomass loading, 5% enzyme concentration, pH 5.5 and temperature 60 0C. The sugars obtained from SFW was integrated with IA production and maximum IA titer achieved with SFW hydrolysate during bioreactor cultivation was 41.1 g/L with conversion yield of 0.27 g/g while with pure glucose IA titer and yield were 44.7 g/L and 0.30 g/g, respectively.


Asunto(s)
Alimentos , Eliminación de Residuos , Aspergillus , Fermentación , Succinatos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...