Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 18417, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36319729

RESUMEN

Salmon aquaculture is the fastest growing animal protein production system in the world; however, intensive farming leads to poor weight gain, stress, and disease outbreaks. Probiotics offer the potential to enhance growth performance and feed efficiency in Atlantic salmon, as well as immunostimulate fish against common pathogens, benefitting farmers and consumers with more efficient production. Here, we isolated and identified 900 native microbial isolates including 18 Lactobacilli from the farmed salmon intestines. Based on whole-genome sequencing and phylogenetic analysis, the Lactobacillus candidates belonged to Latilactobacillus curvatus (L. curvatus) species and formed two distinct phylogenetic groups. Using bioinformatics and in vitro analyses, we selected two candidates L. curvatus ATCC PTA-127116 and L. curvatus ATCC PTA-127117, which showed desirable safety and probiotic properties. The two L. curvatus candidates were evaluated for safety and efficacy (higher final weight) in Atlantic salmon alongside spore-forming Bacilli isolated from salmon, poultry, and swine. All the tested candidates were safe to salmon with no adverse effects. While we did not see efficacy in any Bacillus supplemented groups, compared to untreated group, the group administered with the two L. curvatus strains consortium in feed for seven weeks in freshwater showed indicators of improvement in final body weight by 4.2%. Similarly, the two L. curvatus candidates were also evaluated for safety and efficacy in Atlantic salmon in saltwater; the group administered with the two L. curvatus strains consortium in feed for 11 weeks showed indicators of improvement in final body weight by 4.7%. Comprehensive metabolomics analyses in the presence of different prebiotics and/or additives identified galactooligosaccharide as a potential prebiotic to enhance the efficacy of two L. curvatus candidates. All together, these data provide comprehensive genomic, phenotypic and metabolomic evidence of safety and desirable probiotic properties as well as indicators of in vivo efficacy of two novel endogenous L. curvatus candidates for potential probiotic applications in Atlantic salmon. The in vivo findings need to be confirmed in larger performance studies, including field trials.


Asunto(s)
Probióticos , Salmo salar , Porcinos , Animales , Filogenia , Lactobacillus , Prebióticos , Peso Corporal
2.
Commun Biol ; 5(1): 293, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365748

RESUMEN

Antimicrobial growth promoters (AGP) have played a decisive role in animal agriculture for over half a century. Despite mounting concerns about antimicrobial resistance and demand for antibiotic alternatives, a thorough understanding of how these compounds drive performance is missing. Here we investigate the functional footprint of microbial communities in the cecum of chickens fed four distinct AGP. We find relatively few taxa, metabolic or antimicrobial resistance genes similarly altered across treatments, with those changes often driven by the abundances of core microbiome members. Constraints-based modeling of 25 core bacterial genera associated increased performance with fewer metabolite demands for microbial growth, pointing to altered nitrogen utilization as a potential mechanism of narasin, the AGP with the largest performance increase in our study. Untargeted metabolomics of narasin treated birds aligned with model predictions, suggesting that the core cecum microbiome might be targeted for enhanced performance via its contribution to host-microbiota metabolic crosstalk.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Antibacterianos/farmacología , Bacterias , Pollos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...