Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Elife ; 122023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37602797

RESUMEN

Communication is crucial for organismic interactions, from bacteria, to fungi, to humans. Humans may use the visual sense to monitor the environment before starting acoustic interactions. In comparison, fungi, lacking a visual system, rely on a cell-to-cell dialogue based on secreted signaling molecules to coordinate cell fusion and establish hyphal networks. Within this dialogue, hyphae alternate between sending and receiving signals. This pattern can be visualized via the putative signaling protein Soft (SofT), and the mitogen-activated protein kinase MAK-2 (MakB) which are recruited in an alternating oscillatory manner to the respective cytoplasmic membrane or nuclei of interacting hyphae. Here, we show that signal oscillations already occur in single hyphae of Arthrobotrys flagrans in the absence of potential fusion partners (cell monologue). They were in the same phase as growth oscillations. In contrast to the anti-phasic oscillations observed during the cell dialogue, SofT and MakB displayed synchronized oscillations in phase during the monologue. Once two fusion partners came into each other's vicinity, their oscillation frequencies slowed down (entrainment phase) and transit into anti-phasic synchronization of the two cells' oscillations with frequencies of 104±28 s and 117±19 s, respectively. Single-cell oscillations, transient entrainment, and anti-phasic oscillations were reproduced by a mathematical model where nearby hyphae can absorb and secrete a limited molecular signaling component into a shared extracellular space. We show that intracellular Ca2+ concentrations oscillate in two approaching hyphae, and depletion of Ca2+ from the medium affected vesicle-driven extension of the hyphal tip, abolished the cell monologue and the anti-phasic synchronization of two hyphae. Our results suggest that single hyphae engage in a 'monologue' that may be used for exploration of the environment and can dynamically shift their extracellular signaling systems into a 'dialogue' to initiate hyphal fusion.


Asunto(s)
Proteínas Fúngicas , Hifa , Humanos , Proteínas Fúngicas/metabolismo , Hongos/metabolismo , Membrana Celular/metabolismo , Núcleo Celular/metabolismo
2.
PLoS One ; 18(4): e0280892, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37058495

RESUMEN

Despite the rising global burden of stroke and its socio-economic implications, the neuroimaging predictors of subsequent cognitive impairment are still poorly understood. We address this issue by studying the relationship of white matter integrity assessed within ten days after stroke and patients' cognitive status one year after the attack. Using diffusion-weighted imaging, we apply the Tract-Based Spatial Statistics analysis and construct individual structural connectivity matrices by employing deterministic tractography. We further quantify the graph-theoretical properties of individual networks. The Tract-Based Spatial Statistic did identify lower fractional anisotropy as a predictor of cognitive status, although this effect was mostly attributable to the age-related white matter integrity decline. We further observed the effect of age propagating into other levels of analysis. Specifically, in the structural connectivity approach we identified pairs of regions significantly correlated with clinical scales, namely memory, attention, and visuospatial functions. However, none of them persisted after the age correction. Finally, the graph-theoretical measures appeared to be more robust towards the effect of age, but still were not sensitive enough to capture a relationship with clinical scales. In conclusion, the effect of age is a dominant confounder especially in older cohorts, and unless appropriately addressed, may falsely drive the results of the predictive modelling.


Asunto(s)
Disfunción Cognitiva , Accidente Cerebrovascular , Sustancia Blanca , Humanos , Anciano , Imagen de Difusión Tensora/métodos , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Disfunción Cognitiva/psicología , Imagen de Difusión por Resonancia Magnética , Envejecimiento , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen
3.
J R Soc Interface ; 20(198): 20220781, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36628527

RESUMEN

Many biological oscillators share two properties: they are subject to stochastic fluctuations (noise) and they must reliably adjust their period to changing environmental conditions (entrainment). While noise seems to distort the ability of single oscillators to entrain, in populations of uncoupled oscillators noise allows population-level entrainment for a wider range of input amplitudes and periods. Here, we investigate how this effect depends on the noise intensity and the number of oscillators in the population. We have found that, if a population consists of a sufficient number of oscillators, increasing noise intensity leads to faster entrainment after a phase change of the input signal (jet lag) and increases sensitivity to low-amplitude input signals.


Asunto(s)
Relojes Biológicos , Ritmo Circadiano
5.
Sci Rep ; 11(1): 14497, 2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34262086

RESUMEN

The circadian clock is a cellular mechanism that synchronizes various biological processes with respect to the time of the day. While much progress has been made characterizing the molecular mechanisms underlying this clock, it is less clear how external light cues influence the dynamics of the core clock mechanism and thereby entrain it with the light-dark cycle. Zebrafish-derived cell cultures possess clocks that are directly light-entrainable, thus providing an attractive laboratory model for circadian entrainment. Here, we have developed a stochastic oscillator model of the zebrafish circadian clock, which accounts for the core clock negative feedback loop, light input, and the proliferation of single-cell oscillator noise into population-level luminescence recordings. The model accurately predicts the entrainment dynamics observed in bioluminescent clock reporter assays upon exposure to a wide range of lighting conditions. Furthermore, we have applied the model to obtain refitted parameter sets for cell cultures exposed to a variety of pharmacological treatments and predict changes in single-cell oscillator parameters. Our work paves the way for model-based, large-scale screens for genetic or pharmacologically-induced modifications to the entrainment of circadian clock function.


Asunto(s)
Ritmo Circadiano/fisiología , Modelos Biológicos , Pez Cebra , Animales , Animales Modificados Genéticamente , Butadienos/farmacología , Células Cultivadas , Ritmo Circadiano/efectos de los fármacos , Colforsina/farmacología , CMP Cíclico/análogos & derivados , CMP Cíclico/farmacología , Mediciones Luminiscentes , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Nitrilos/farmacología , Reproducibilidad de los Resultados , Análisis de la Célula Individual , Procesos Estocásticos , Pez Cebra/genética
6.
Neurobiol Dis ; 154: 105347, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33771663

RESUMEN

The seemingly random and unpredictable nature of seizures is a major debilitating factor for people with epilepsy. An increasing body of evidence demonstrates that the epileptic brain exhibits long-term fluctuations in seizure susceptibility, and seizure emergence seems to be a consequence of processes operating over multiple temporal scales. A deeper insight into the mechanisms responsible for long-term seizure fluctuations may provide important information for understanding the complex nature of seizure genesis. In this study, we explored the long-term dynamics of seizures in the tetanus toxin model of temporal lobe epilepsy. The results demonstrate the existence of long-term fluctuations in seizure probability, where seizures form clusters in time and are then followed by seizure-free periods. Within each cluster, seizure distribution is non-Poissonian, as demonstrated by the progressively increasing inter-seizure interval (ISI), which marks the approaching cluster termination. The lengthening of ISIs is paralleled by: increasing behavioral seizure severity, the occurrence of convulsive seizures, recruitment of extra-hippocampal structures and the spread of electrographic epileptiform activity outside of the limbic system. The results suggest that repeated non-convulsive seizures obey the 'seizures-beget-seizures' principle, leading to the occurrence of convulsive seizures, which decrease the probability of a subsequent seizure and, thus, increase the following ISI. The cumulative effect of repeated convulsive seizures leads to cluster termination, followed by a long inter-cluster period. We propose that seizures themselves are an endogenous factor that contributes to long-term fluctuations in seizure susceptibility and their mutual interaction determines the future evolution of disease activity.


Asunto(s)
Epilepsia del Lóbulo Temporal/fisiopatología , Convulsiones/fisiopatología , Animales , Electroencefalografía/métodos , Electroencefalografía/tendencias , Epilepsia del Lóbulo Temporal/inducido químicamente , Masculino , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Convulsiones/inducido químicamente , Toxina Tetánica/toxicidad , Factores de Tiempo
7.
Nat Neurosci ; 21(12): 1742-1752, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30482946

RESUMEN

The mechanism of seizure emergence and the role of brief interictal epileptiform discharges (IEDs) in seizure generation are two of the most important unresolved issues in modern epilepsy research. We found that the transition to seizure is not a sudden phenomenon, but is instead a slow process that is characterized by the progressive loss of neuronal network resilience. From a dynamical perspective, the slow transition is governed by the principles of critical slowing, a robust natural phenomenon that is observable in systems characterized by transitions between dynamical regimes. In epilepsy, this process is modulated by synchronous synaptic input from IEDs. IEDs are external perturbations that produce phasic changes in the slow transition process and exert opposing effects on the dynamics of a seizure-generating network, causing either anti-seizure or pro-seizure effects. We found that the multifaceted nature of IEDs is defined by the dynamical state of the network at the moment of the discharge occurrence.


Asunto(s)
Hipocampo/fisiopatología , Red Nerviosa/fisiopatología , Convulsiones/fisiopatología , Animales , Región CA1 Hipocampal/fisiopatología , Electroencefalografía , Humanos , Masculino , Ratas Sprague-Dawley , Ratas Wistar , Sinapsis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA