Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
MethodsX ; 12: 102562, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38292308

RESUMEN

Stalk lodging (structural failure crops prior to harvest) significantly reduces annual yields of vital grain crops. The lack of standardized, high throughput phenotyping methods capable of quantifying biomechanical plant traits prevents comprehensive understanding of the genetic architecture of stalk lodging resistance. A phenotyping pipeline developed to enable higher throughput biomechanical measurements of plant traits related to stalk lodging is presented. The methods were developed using principles from the fields of engineering mechanics and metrology and they enable retention of plant-specific data instead of averaging data across plots as is typical in most phenotyping studies. This pipeline was specifically designed to be implemented in large experimental studies and has been used to phenotype over 40,000 maize stalks. The pipeline includes both lab- and field-based phenotyping methodologies and enables the collection of metadata. Best practices learned by implementing this pipeline over the past three years are presented. The specific instruments (including model numbers and manufacturers) that work well for these methods are presented, however comparable instruments may be used in conjunction with these methods as seen fit.•Efficient methods to measure biomechanical traits and record metadata related to stalk lodging.•Can be used in studies with large sample sizes (i.e., > 1,000).

2.
Plant Physiol ; 193(4): 2459-2479, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37595026

RESUMEN

Source and sink interactions play a critical but mechanistically poorly understood role in the regulation of senescence. To disentangle the genetic and molecular mechanisms underlying source-sink-regulated senescence (SSRS), we performed a phenotypic, transcriptomic, and systems genetics analysis of senescence induced by the lack of a strong sink in maize (Zea mays). Comparative analysis of genotypes with contrasting SSRS phenotypes revealed that feedback inhibition of photosynthesis, a surge in reactive oxygen species, and the resulting endoplasmic reticulum (ER) stress were the earliest outcomes of weakened sink demand. Multienvironmental evaluation of a biparental population and a diversity panel identified 12 quantitative trait loci and 24 candidate genes, respectively, underlying SSRS. Combining the natural diversity and coexpression networks analyses identified 7 high-confidence candidate genes involved in proteolysis, photosynthesis, stress response, and protein folding. The role of a cathepsin B like protease 4 (ccp4), a candidate gene supported by systems genetic analysis, was validated by analysis of natural alleles in maize and heterologous analyses in Arabidopsis (Arabidopsis thaliana). Analysis of natural alleles suggested that a 700-bp polymorphic promoter region harboring multiple ABA-responsive elements is responsible for differential transcriptional regulation of ccp4 by ABA and the resulting variation in SSRS phenotype. We propose a model for SSRS wherein feedback inhibition of photosynthesis, ABA signaling, and oxidative stress converge to induce ER stress manifested as programed cell death and senescence. These findings provide a deeper understanding of signals emerging from loss of sink strength and offer opportunities to modify these signals to alter senescence program and enhance crop productivity.


Asunto(s)
Transcriptoma , Zea mays , Zea mays/metabolismo , Transcriptoma/genética , Perfilación de la Expresión Génica , Fotosíntesis/genética , Fenotipo , Regulación de la Expresión Génica de las Plantas
3.
Plant Methods ; 18(1): 56, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35477510

RESUMEN

BACKGROUND: Stalk lodging (breaking of agricultural plant stalks prior to harvest) is a multi-billion dollar a year problem. Stalk lodging occurs when high winds induce bending moments in the stalk which exceed the bending strength of the plant. Previous biomechanical models of plant stalks have investigated the effect of cross-sectional morphology on stalk lodging resistance (e.g., diameter and rind thickness). However, it is unclear if the location of stalk failure along the length of stem is determined by morphological or compositional factors. It is also unclear if the crops are structurally optimized, i.e., if the plants allocate structural biomass to create uniform and minimal bending stresses in the plant tissues. The purpose of this paper is twofold: (1) to investigate the relationship between bending stress and failure location of maize stalks, and (2) to investigate the potential of phenotyping for internode-level bending stresses to assess lodging resistance. RESULTS: 868 maize specimens representing 16 maize hybrids were successfully tested in bending to failure. Internode morphology was measured, and bending stresses were calculated. It was found that bending stress is highly and positively associated with failure location. A user-friendly computational tool is presented to help plant breeders in phenotyping for internode-level bending stress. Phenotyping for internode-level bending stresses could potentially be used to breed for more biomechanically optimal stalks that are resistant to stalk lodging. CONCLUSIONS: Internode-level bending stress plays a potentially critical role in the structural integrity of plant stems. Equations and tools provided herein enable researchers to account for this phenotype, which has the potential to increase the bending strength of plants without increasing overall structural biomass.

4.
3 Biotech ; 10(1): 15, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31879579

RESUMEN

Endophytes confer unique ecological advantages to their host plants. In this study, we have characterized the diversity of endophytic consortia associated with the GPU-28 (GPU) and Udurumallige (UM) finger millet varieties, which are resistant and susceptible to the blast disease, respectively. Whole genome metagenome sequencing of GPU and UM helped to identify 1029 species (includes obligate endophytes) of microbiota. Among them, 385 and 357 species were unique to GPU and UM, respectively. Remaining 287 species were common to both the varieties. Actinobacteria and other plant-growth promoting bacteria were abundant in GPU as compared to UM. Functional annotation of genes predicted from genomes of endophytes associated with GPU variety showed that many genes had functional role in stress response, secondary metabolism, aromatic compounds, glutathione, and cysteine synthesis pathways as compared to UM. Based on in vitro and in planta studies, Bacillus cereus and Paenibacillus spp. were found to be effective in suppressing the growth of blast disease pathogen Magnaporthe grisea (strain MG03). In the future, these strains could serve as potential biocontrol agents to reduce the incidence of blast disease in finger millet crop.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...