Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Acta Pharmacol Sin ; 39(3): 371-381, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29188803

RESUMEN

Thiazide-like diuretics are the most commonly used drugs to treat arterial hypertension, with their efficacy being linked to their chronic vasodilatory effect. Previous studies suggest that activation of the large conductance voltage- and Ca2+-dependent K+ (BK) channel (Slo 1, MaxiK channel) is responsible for the thiazide-induced vasodilatory effect. But the direct electrophysiological evidence supporting this claim is lacking. BK channels can be associated with one small accessory ß-subunit (ß1-ß4) that confers specific biophysical and pharmacological characteristics to the current phenotype. The ß1-subunit is primarily expressed in smooth muscle cells (SMCs). In this study we investigated the effect of hydrochlorothiazide (HCTZ) on BK channel activity in native SMCs from human umbilical artery (HUASMCs) and HEK293T cells expressing the BK channel (with and without the ß1-subunit). Bath application of HCTZ (10 µmol/L) significantly augmented the BK current in HUASMCs when recorded using the whole-cell configurations, but it did not affect the unitary conductance and open probability of the BK channel in HUASMCs evaluated in the inside-out configuration, suggesting an indirect mechanism requiring cell integrity. In HEK293T cells expressing BK channels, HCTZ-augmented BK channel activity was only observed when the ß1-subunit was co-expressed, being concentration-dependent with an EC50 of 28.4 µmol/L, whereas membrane potential did not influence the concentration relationship. Moreover, HCTZ did not affect the BK channel current in HEK293T cells evaluated in the inside-out configuration, but significantly increases the open probability in the cell-attached configuration. Our data demonstrate that a ß1-subunit-dependent mechanism that requires SMC integrity leads to HCTZ-induced BK channel activation.


Asunto(s)
Hidroclorotiazida/farmacología , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/fisiología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/fisiología , Células Cultivadas , Humanos , Potenciales de la Membrana/efectos de los fármacos
2.
Br J Pharmacol ; 174(23): 4430-4448, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28940182

RESUMEN

BACKGROUND AND PURPOSE: Ethanol at concentrations obtained in the circulation during moderate-heavy episodic drinking (30-60 mM) causes cerebral artery constriction in several species, including humans. In rodents, ethanol-induced cerebral artery constriction results from ethanol inhibition of large conductance voltage/Ca2+i -gated K+ (BK) channels in cerebral artery myocytes. Moreover, the smooth muscle-abundant BK ß1 accessory subunit is required for ethanol to inhibit cerebral artery myocyte BK channels under physiological Ca2+i and voltages and thus constrict cerebral arteries. The molecular bases of these ethanol actions remain unknown. Here, we set to identify the BK ß1 region(s) that mediates ethanol-induced inhibition of cerebral artery myocyte BK channels and eventual arterial constriction. EXPERIMENTAL APPROACH: We used protein biochemistry, patch-clamp on engineered channel subunits, reversible cDNA permeabilization of KCNMB1 K/O mouse arteries and artery in vitro pressurization. KEY RESULTS: Ethanol inhibition of BK current was facilitated by ß1 but not ß4 subunits. Furthermore, only BK complexes containing ß chimeras with ß1 transmembrane (TM) domains on a ß4 background or with a ß1 TM2 domain on a ß4 background displayed ethanol responses identical to those of BK complexes including wild-type ß1. Moreover, ß1 TM2 itself but not other ß regions were necessary for ethanol-induced cerebral artery constriction. CONCLUSIONS AND IMPLICATIONS: BK ß1 TM2 is necessary for this subunit to enable ethanol-induced inhibition of myocyte BK channels and cerebral artery constriction at physiological Ca2+ and voltages. Thus, novel agents that target ß1 TM2 may be considered to counteract ethanol-induced cerebral artery constriction and associated cerebrovascular conditions.


Asunto(s)
Arterias Cerebrales/efectos de los fármacos , Etanol/farmacología , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Vasoconstricción/efectos de los fármacos , Animales , Arterias Cerebrales/metabolismo , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Musculares/efectos de los fármacos , Células Musculares/metabolismo , Técnicas de Placa-Clamp , Ratas
3.
Pflugers Arch ; 469(2): 263-277, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28012000

RESUMEN

Large conductance, Ca2+i- and voltage-gated K+ (BK) channels regulate myogenic tone and, thus, arterial diameter. In smooth muscle (SM), BK channels include channel-forming α and auxiliary ß1 subunits. BK ß1 increases the channel's Ca2+ sensitivity, allowing BK channels to negatively feedback on depolarization-induced Ca2+ entry, oppose SM contraction and favor vasodilation. Thus, endothelial-independent vasodilation can be evoked though targeting of SM BK ß1 by endogenous ligands, including lithocholate (LCA). Here, we investigated the expression of BK ß1 across arteries of the cerebral and peripheral circulations, and the contribution of such expression to channel function and BK ß1-mediated vasodilation. Data demonstrate that endothelium-independent, BK ß1-mediated vasodilation by LCA is larger in coronary (CA) and basilar (BA) arteries than in anterior cerebral (ACA), middle cerebral (MCA), posterior cerebral (PCA), and mesenteric (MA) arteries, all arterial segments having a similar diameter. Thus, differential dilation occurs in extracranial arteries which are subjected to similar vascular pressure (CA vs. MA) and in arteries that irrigate different brain regions (BA vs. ACA, MCA, and PCA). SM BK channels from BA and CA displayed increased basal activity and LCA responses, indicating increased BK ß1 functional presence. Indeed, in the absence of detectable changes in BK α, BA and CA myocytes showed an increased location of BK ß1 in the plasmalemma/subplasmalemma. Moreover, these myocytes distinctly showed increased BK ß1 messenger RNA (mRNA) levels. Supporting a major role of enhanced BK ß1 transcripts in artery dilation, LCA-induced dilation of MCA transfected with BK ß1 complementary DNA (cDNA) was as high as LCA-induced dilation of untransfected BA or CA.


Asunto(s)
Arterias Cerebrales/metabolismo , Vasos Coronarios/metabolismo , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Arterias Mesentéricas/metabolismo , Animales , Presión Sanguínea/fisiología , Masculino , Células Musculares/metabolismo , Contracción Muscular/fisiología , Músculo Liso Vascular/metabolismo , Ratas , Ratas Sprague-Dawley , Vasodilatación/fisiología
4.
J Gen Physiol ; 148(5): 419-440, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27799321

RESUMEN

In most mammalian tissues, Ca2+i/voltage-gated, large conductance K+ (BK) channels consist of channel-forming slo1 and auxiliary (ß1-ß4) subunits. When Ca2+i (3-20 µM) reaches the vicinity of BK channels and increases their activity at physiological voltages, ß1- and ß4-containing BK channels are, respectively, inhibited and potentiated by intoxicating levels of ethanol (50 mM). Previous studies using different slo1s, lipid environments, and Ca2+i concentrations-all determinants of the BK response to ethanol-made it impossible to determine the specific contribution of ß subunits to ethanol action on BK activity. Furthermore, these studies measured ethanol action on ionic current under a limited range of stimuli, rendering no information on the gating processes targeted by alcohol and their regulation by ßs. Here, we used identical experimental conditions to obtain single-channel and macroscopic currents of the same slo1 channel ("cbv1" from rat cerebral artery myocytes) in the presence and absence of 50 mM ethanol. First, we assessed the role five different ß subunits (1,2,2-IR, 3-variant d, and 4) in ethanol action on channel function. Thus, two phenotypes were identified: (1) ethanol potentiated cbv1-, cbv1+ß3-, and cbv1+ß4-mediated currents at low Ca2+i while inhibiting current at high Ca2+i, the potentiation-inhibition crossover occurring at 20 µM Ca2+i; (2) for cbv1+ß1, cbv1+wt ß2, and cbv1+ß2-IR, this crossover was shifted to ∼3 µM Ca2+i Second, applying Horrigan-Aldrich gating analysis on both phenotypes, we show that ethanol fails to modify intrinsic gating and the voltage-dependent parameters under examination. For cbv1, however, ethanol (a) drastically increases the channel's apparent Ca2+ affinity (nine-times decrease in Kd) and (b) very mildly decreases allosteric coupling between Ca2+ binding and channel opening (C). The decreased Kd leads to increased channel activity. For cbv1+ß1, ethanol (a) also decreases Kd, yet this decrease (two times) is much smaller than that of cbv1; (b) reduces C; and (c) decreases coupling between Ca2+ binding and voltage sensing (parameter E). Decreased allosteric coupling leads to diminished BK activity. Thus, we have identified critical gating modifications that lead to the differential actions of ethanol on slo1 with and without different ß subunits.


Asunto(s)
Etanol/farmacología , Activación del Canal Iónico/efectos de los fármacos , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Regulación Alostérica , Animales , Calcio/metabolismo , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/química , Ratones , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Xenopus
5.
J Pharmacol Exp Ther ; 356(1): 106-15, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26555891

RESUMEN

Despite preventive education, the combined consumption of alcohol and caffeine (particularly from "energy drinks") continues to rise. Physiologic perturbations by separate intake of ethanol and caffeine have been widely documented. However, the biologic actions of the alcohol-caffeine combination and their underlying subcellular mechanisms have been scarcely studied. Using intravital microscopy on a closed-cranial window and isolated, pressurized vessels, we investigated the in vivo and in vitro action of ethanol-caffeine mixtures on cerebral arteries from rats and mice, widely recognized models to address cerebrovascular pathophysiology and pharmacology. Caffeine at concentrations found in human circulation after ingestion of one to two cups of coffee (10 µM) antagonized the endothelium-independent constriction of cerebral arteries evoked by ethanol concentrations found in blood during moderate-heavy alcohol intoxication (40-70 mM). Caffeine antagonism against alcohol was similar whether evaluated in vivo or in vitro, suggesting independence of systemic factors and drug metabolism, but required a functional endothelium. Moreover, caffeine protection against alcohol increased nitric oxide (NO•) levels over those found in the presence of ethanol alone, disappeared upon blocking NO• synthase, and could not be detected in pressurized cerebral arteries from endothelial nitric-oxide synthase knockout (eNOS(-/-)) mice. Finally, incubation of de-endothelialized cerebral arteries with the NO• donor sodium nitroprusside (10 µM) fully restored the protective effect of caffeine. This study demonstrates for the first time that caffeine antagonizes ethanol-induced cerebral artery constriction and identifies endothelial NO• as the critical caffeine effector on smooth muscle targets. Conceivably, situations that perturb endothelial function and/or NO• availability will critically alter caffeine antagonism of alcohol-induced cerebrovascular constriction without significantly disrupting endothelium-independent, alcohol-induced cerebral artery constriction itself.


Asunto(s)
Cafeína/farmacología , Depresores del Sistema Nervioso Central/farmacología , Estimulantes del Sistema Nervioso Central/farmacología , Arterias Cerebrales/efectos de los fármacos , Endotelio Vascular/fisiología , Etanol/antagonistas & inhibidores , Etanol/farmacología , Óxido Nítrico/fisiología , Vasoconstricción/efectos de los fármacos , Animales , Cafeína/sangre , Depresores del Sistema Nervioso Central/sangre , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/enzimología , Etanol/sangre , Masculino , Ratones , Ratones Noqueados , Músculo Liso Vascular/efectos de los fármacos , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico Sintasa de Tipo III/genética , Nitroprusiato/farmacología , Ratas , Ratas Sprague-Dawley
6.
Biochim Biophys Acta ; 1848(10 Pt A): 2406-13, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26196595

RESUMEN

Cholesterol is one of the major lipid components of membranes in mammalian cells. In recent years, cholesterol has emerged as a major regulator of ion channel function. The most common effect of cholesterol on ion channels in general and on inwardly rectifying potassium (Kir) channels in particular is a decrease in activity. In contrast, we have recently shown that native G-protein gated Kir (GIRK or Kir3) channels that underlie atrial KACh currents are up-regulated by cholesterol. Here we unveil the biophysical basis of cholesterol-induced increase in KACh activity. Using planar lipid bilayers we show that cholesterol significantly enhances the channel open frequency of the Kir3.1/Kir3.4 channels, which underlie KACh currents. In contrast, our data indicate that cholesterol does not affect their unitary conductance. Furthermore, using fluorescent and TIRF microscopy as well as surface protein biotinylation, we also show that cholesterol enrichment in vitro has no effect on surface expression of GFP-tagged channels expressed in Xenopus oocytes or transfected into HEK293 cells. Together, these data demonstrate for the first time that cholesterol enhances Kir3-mediated current by increasing the channel open probability.


Asunto(s)
Colesterol/metabolismo , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/fisiología , Activación del Canal Iónico/fisiología , Modelos Biológicos , Modelos Estadísticos , Potasio/metabolismo , Animales , Simulación por Computador , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/química , Células HEK293 , Humanos , Modelos Químicos , Oocitos/química , Oocitos/fisiología , Xenopus laevis
7.
PLoS One ; 9(10): e109306, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25275635

RESUMEN

Voltage/Ca²âº(i)-gated, large conductance K+ (BK) channels result from tetrameric association of α (slo1) subunits. In most tissues, BK protein complexes include regulatory ß subunits that contain two transmembrane domains (TM1, TM2), an extracellular loop, and two short intracellular termini. Four BK ß types have been identified, each presenting a rather selective tissue-specific expression profile. Thus, BK ß modifies current phenotype to suit physiology in a tissue-specific manner. The smooth muscle-abundant BK ß1 drastically increases the channel's apparent Ca²âº(i) sensitivity. The resulting phenotype is critical for BK channel activity to increase in response to Ca2+ levels reached near the channel during depolarization-induced Ca2+ influx and myocyte contraction. The eventual BK channel activation generates outward K+ currents that drive the membrane potential in the negative direction and eventually counteract depolarization-induced Ca2+ influx. The BK ß1 regions responsible for the characteristic phenotype of ß1-containing BK channels remain to be identified. We used patch-clamp electrophysiology on channels resulting from the combination of smooth muscle slo1 (cbv1) subunits with smooth muscle-abundant ß1, neuron-abundant ß4, or chimeras constructed by swapping ß1 and ß4 regions, and determined the contribution of specific ß1 regions to the BK phenotype. At Ca2+ levels found near the channel during myocyte contraction (10 µM), channel complexes that included chimeras having both TMs from ß1 and the remaining regions ("background") from ß4 showed a phenotype (V(half), τ(act), τ(deact)) identical to that of complexes containing wt ß1. This phenotype could not be evoked by complexes that included chimeras combining either ß1 TM1 or ß1 TM2 with a ß4 background. Likewise, ß "halves" (each including ß1 TM1 or ß1 TM2) resulting from interrupting the continuity of the EC loop failed to render the normal phenotype, indicating that physical connection between ß1 TMs via the EC loop is also necessary for proper channel function.


Asunto(s)
Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Animales , Humanos , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/análisis , Potenciales de la Membrana , Células Musculares/citología , Células Musculares/metabolismo , Músculo Liso/citología , Músculo Liso/metabolismo , Técnicas de Placa-Clamp , Estructura Terciaria de Proteína , Ratas , Xenopus
8.
Proc Natl Acad Sci U S A ; 111(25): 9313-8, 2014 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-24927535

RESUMEN

Ethanol alters BK (slo1) channel function leading to perturbation of physiology and behavior. Site(s) and mechanism(s) of ethanol-BK channel interaction are unknown. We demonstrate that ethanol docks onto a water-accessible site that is strategically positioned between the slo1 calcium-sensors and gate. Ethanol only accesses this site in presence of calcium, the BK channel's physiological agonist. Within the site, ethanol hydrogen-bonds with K361. Moreover, substitutions that hamper hydrogen bond formation or prevent ethanol from accessing K361 abolish alcohol action without altering basal channel function. Alcohol interacting site dimensions are approximately 10.7 × 8.6 × 7.1 Å, accommodating effective (ethanol-heptanol) but not ineffective (octanol, nonanol) channel activators. This study presents: (i) to our knowledge, the first identification and characterization of an n-alkanol recognition site in a member of the voltage-gated TM6 channel superfamily; (ii) structural insights on ethanol allosteric interactions with ligand-gated ion channels; and (iii) a first step for designing agents that antagonize BK channel-mediated alcohol actions without perturbing basal channel function.


Asunto(s)
Depresores del Sistema Nervioso Central/química , Etanol/química , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/química , Sustitución de Aminoácidos , Animales , Sitios de Unión , Calcio/química , Calcio/metabolismo , Depresores del Sistema Nervioso Central/farmacología , Etanol/farmacología , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/genética , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Ratones , Mutación Missense , Relación Estructura-Actividad
9.
Mol Pharmacol ; 83(1): 235-44, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23093494

RESUMEN

Ethanol levels reached in circulation during moderate-to-heavy alcohol intoxication (50-100 mM) modify Ca(2+)- and voltage-gated K(+) (BK) channel steady-state activity, eventually altering both physiology and behavior. Ethanol action on BK steady-state activity solely requires the channel-forming subunit slo1 within a bare lipid environment. To identify the protein regions that confer ethanol sensitivity to slo1, we tested the ethanol sensitivity of heterologously expressed slo1 and structurally related channels. Ethanol (50 mM) increased the steady-state activities of mslo1 and Ca(2+)-gated MthK, the latter after channel reconstitution into phospholipid bilayers. In contrast, 50-100 mM ethanol failed to alter the steady-state activities of Na(+)/Cl(-)-gated rslo2, H(+)-gated mslo3, and an mslo1/3 chimera engineered by joining the mslo1 region encompassing the N terminus to S6 with the mslo3 cytosolic tail domain (CTD). Collectively, data indicate that the slo family canonical design, which combines a transmembrane 6 (TM6) voltage-gated K(+) channel (K(V)) core with CTDs that empower the channel with ion-sensing, does not necessarily render ethanol sensitivity. In addition, the region encompassing the N terminus to the S0-S1 cytosolic loop (missing in MthK) is not necessary for ethanol action. Moreover, incorporation of both this region and an ion-sensing CTD to TM6 K(V) cores (a design common to mslo1, mslo3, and the mslo1/mslo3 chimera) is not sufficient for ethanol sensitivity. Rather, a CTD containing Ca(2+)-sensing regulator of conductance for K(+) domains seems to be critical to bestow K(V) structures, whether of TM2 (MthK) or TM6 (slo1), with sensitivity to intoxicating ethanol levels.


Asunto(s)
Etanol/farmacología , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/fisiología , Animales , Femenino , Humanos , Activación del Canal Iónico , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/genética , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Canales de Potasio de Gran Conductancia Activados por el Calcio/fisiología , Ratones , Oocitos/efectos de los fármacos , Oocitos/fisiología , Técnicas de Placa-Clamp , Canales de Potasio/genética , Canales de Potasio/fisiología , Canales de potasio activados por Sodio , Ratas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/fisiología , Xenopus laevis
10.
Arterioscler Thromb Vasc Biol ; 31(11): 2410-23, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21868700

RESUMEN

OBJECTIVE: Hypercholesterolemia and alcohol drinking constitute independent risk factors for cerebrovascular disease. Alcohol constricts cerebral arteries in several species, including humans. This action results from inhibition of voltage- and calcium-gated potassium channels (BK) in vascular smooth muscle cells (VSMC). BK activity is also modulated by membrane cholesterol. We investigated whether VSMC cholesterol regulates ethanol actions on BK and cerebral arteries. METHODS AND RESULTS: After myogenic tone development, cholesterol depletion of rat, resistance-size cerebral arteries ablated ethanol-induced constriction, a result that was identical in intact and endothelium-free vessels. Cholesterol depletion reduced ethanol inhibition of BK whether the channel was studied in VSMC or after rat cerebral artery myocyte subunit (cbv1+ß1) reconstitution into phospholipid bilayers. Homomeric cbv1 channels reconstituted into bilayers and VSMC BK from ß1 knockout mice were both resistant to ethanol-induced inhibition. Moreover, arteries from ß1 knockout mice failed to respond to ethanol even when VSMC cholesterol was kept unmodified. Remarkably, ethanol inhibition of cbv1+ß1 in bilayers and wt mouse VSMC BK were drastically blunted by cholesterol depletion. Consistently, cholesterol depletion suppressed ethanol constriction of wt mouse arteries. CONCLUSION: VSMC cholesterol and BK ß1 are both required for ethanol inhibition of BK and the resulting cerebral artery constriction, with health-related implications for manipulating cholesterol levels in alcohol-induced cerebrovascular disease.


Asunto(s)
Arterias Cerebrales/metabolismo , Colesterol/metabolismo , Etanol/farmacología , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/antagonistas & inhibidores , Músculo Liso Vascular/metabolismo , Vasoconstricción/efectos de los fármacos , Animales , Arterias Cerebrales/efectos de los fármacos , Arterias Cerebrales/fisiopatología , Electrofisiología/métodos , Etanol/efectos adversos , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/deficiencia , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Membrana Dobles de Lípidos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Ratas , Ratas Sprague-Dawley , Vasoconstricción/fisiología
11.
J Cardiovasc Pharmacol ; 54(6): 526-34, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19755915

RESUMEN

Sepsis has been reported to impair endothelium-dependent vasodilations mediated by nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF). Although some studies demonstrate that statins can improve NO-mediated response in septic animals, little is known about its effect on the EDHF response. The present study examined the effects of atorvastatin pretreatment on sepsis-induced endothelial dysfunctions and hypotension in rats. Eighteen hours after the induction of sepsis by cecal ligation and puncture, thoracic aorta and second generation pulmonary arteries were isolated to examine acetylcholine-induced endothelium-dependent dilations mediated by NO and EDHF, respectively. The messenger RNA (mRNA) expression for endothelial NO synthase (eNOS) and inducible NO synthase (iNOS) was done by real-time polymerase chain reaction. NO was measured as nitrate/nitrite release using Griess method. Mean arterial pressure was measured by the invasive method. Sepsis significantly decreased (26%) the relaxation response to acetylcholine in the rat aorta. It also markedly inhibited the eNOS mRNA expression and acetylcholine-stimulated NO release in this vessel. Pretreatment of the rats with atorvastatin (10 mg/kg, orally) 48, 24, and 2 hours before induction of sepsis preserved acetylcholine-induced relaxation, eNOS mRNA expression, acetylcholine-stimulated NO release, and attenuated increase in the inducible NO synthase mRNA expression and basal NO production in the aorta. The maximal EDHF response mediated by acetylcholine was 25.30% +/- 3.00% in the pulmonary artery. Sepsis abolished this response but atorvastatin restored it (22.55% +/- 2.50%). Atorvastatin, however, failed to prevent sepsis-induced hypotension. These results suggest that atorvastatin can restore impaired endothelium-dependent vasodilations mediated by NO and EDHF but not hypotension in sepsis.


Asunto(s)
Factores Biológicos/metabolismo , Endotelio Vascular/fisiopatología , Ácidos Heptanoicos/farmacología , Hipotensión/fisiopatología , Óxido Nítrico/metabolismo , Pirroles/farmacología , Sepsis/prevención & control , Vasodilatación/efectos de los fármacos , Acetilcolina/farmacología , Animales , Aorta/efectos de los fármacos , Aorta/metabolismo , Aorta/fisiopatología , Atorvastatina , Factores Biológicos/antagonistas & inhibidores , Recuento de Células Sanguíneas , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Bloqueadores de los Canales de Calcio/farmacología , Inhibidores Enzimáticos del Citocromo P-450 , Modelos Animales de Enfermedad , Endotelio Vascular/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Expresión Génica/genética , Ácidos Heptanoicos/uso terapéutico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Hipotensión/etiología , Hipotensión/prevención & control , Indometacina/farmacología , Masculino , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo III/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo III/genética , Nitritos/sangre , Nitroprusiato/farmacología , Fenilefrina/farmacología , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/metabolismo , Arteria Pulmonar/fisiopatología , Pirroles/uso terapéutico , Ratas , Ratas Wistar , Sepsis/sangre , Sepsis/complicaciones , Sepsis/fisiopatología , Vasodilatación/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...