Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Parasit Vectors ; 17(1): 267, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918848

RESUMEN

BACKGROUND: Past findings demonstrate that arthropods can egest midgut microbiota into the host skin leading to dual colonization of the vertebrate host with pathogens and saliva microbiome. A knowledge gap exists on how the saliva microbiome interacts with the pathogen in the saliva. To fill this gap, we need to first define the microbial composition of mosquito saliva. METHODS: The current study aimed at analyzing and comparing the microbial profile of Aedes albopictus saliva and midgut as well as assessing the impact of Zika virus (ZIKV) infection on the midgut and saliva microbial composition. Colony-reared Ae. albopictus strains were either exposed to ZIKV infectious or noninfectious bloodmeal. At 14 ays postinfection, the 16S V3-V4 hypervariable rRNA region was amplified from midgut and saliva samples and sequenced on an Illumina MiSeq platform. The relative abundance and diversity of midgut and saliva microbial taxa were assessed. RESULTS: We observed a richer microbial community in the saliva compared with the midgut, yet some of the microbial taxa were common in the midgut and saliva. ZIKV infection did not impact the microbial diversity of midgut or saliva. Further, we identified Elizabethkingia spp. in the Ae. albopictus saliva. CONCLUSIONS: This study provides insights into the microbial community of the Ae. albopictus saliva as well as the influence of ZIKV infection on the microbial composition of its midgut and saliva. The identification of Elizabethkingia spp., an emerging pathogen of global health significance, in Ae. albopictus saliva is of medical importance. Future studies to assess the interactions between Ae. albopictus saliva microbiome and ZIKV could lead to novel strategies for developing transmission barrier tools.


Asunto(s)
Aedes , Microbiota , Mosquitos Vectores , Saliva , Virus Zika , Animales , Saliva/microbiología , Saliva/virología , Aedes/microbiología , Aedes/virología , Virus Zika/genética , Virus Zika/aislamiento & purificación , Mosquitos Vectores/microbiología , Mosquitos Vectores/virología , Microbioma Gastrointestinal , ARN Ribosómico 16S/genética , Femenino , Infección por el Virus Zika/transmisión , Infección por el Virus Zika/virología , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/virología
2.
Bioengineering (Basel) ; 10(10)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37892843

RESUMEN

Skeletal muscle growth in livestock impacts meat quantity and quality. Concerns arise because certain feed additives, like beta-agonists, may affect food safety. Skeletal muscle is a specialized tissue consisting of nondividing and multinucleated muscle fibers. Myostatin (MSTN), a protein specific to skeletal muscle, is secreted and functions as a negative regulator of muscle mass by inhibiting the proliferation and differentiation of myoblasts. To enhance livestock muscle growth, phytogenic feed additives could be an alternative as they inhibit MSTN activity. The objective of this study was to establish a systematic screening platform using MSTN activity to evaluate phytogenics, providing scientific evidence of their assessment and potency. In this study, we established a screening platform to monitor myostatin promoter activity in rat L8 myoblasts. Extract of Glycyrrhiza uralensis (GUE), an oriental herbal medicine, was identified through this screening platform, and the active fractions of GUE were identified using a process-scale liquid column chromatography system. For in vivo study, GUE as a feed additive was investigated in growth-finishing pigs. The results showed that GUE significantly increased body weight, carcass weight, and lean content in pigs. Microbiota analysis indicated that GUE did not affect the composition of gut microbiota in pigs. In summary, this established rodent myoblast screening platform was used to identify a myogenesis-related phytogenic, GUE, and further demonstrated that the active fractions and compounds inhibited MSTN expression. These findings suggest a novel application for GUE in growth performance enhancement through modulation of MSTN expression. Moreover, this well-established screening platform holds significant potential for identifying and assessing a diverse range of phytogenics that contribute to the process of myogenesis.

3.
iScience ; 26(8): 107468, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37593454

RESUMEN

West Nile virus (WNV), the most prevalent arthropod-borne virus (arbovirus) in the United States, is maintained in a cycle between Culex spp. mosquitoes and birds. Arboviruses exist within hosts and vectors as a diverse set of closely related genotypes. In theory, this genetic diversity can facilitate adaptation to distinct environments during host cycling, yet host-specific fitness of minority genotypes has not been assessed. Utilizing WNV deep-sequencing data, we previously identified a naturally occurring, mosquito-biased substitution, NS3 P319L. Using both cell culture and experimental infection in natural hosts, we demonstrated that this substitution confers attenuation in vertebrate hosts and increased transmissibility by mosquitoes. Biochemical assays demonstrated temperature-sensitive ATPase activity consistent with host-specific phenotypes. Together these data confirm the maintenance of host-specific minority variants in arbovirus mutant swarms, suggest a unique role for NS3 in viral fitness, and demonstrate that intrahost sequence data can inform mechanisms of host-specific adaptation.

4.
Acta Pharm Sin B ; 12(4): 1662-1670, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35847519

RESUMEN

Zika virus (ZIKV) causes significant human diseases without specific therapy. Previously we found erythrosin B, an FDA-approved food additive, inhibited viral NS2B-NS3 interactions, leading to inhibition of ZIKV infection in cell culture. In this study, we performed pharmacokinetic and in vivo studies to demonstrate the efficacy of erythrosin B against ZIKV in 3D mini-brain organoid and mouse models. Our results showed that erythrosin B is very effective in abolishing ZIKV replication in the 3D organoid model. Although pharmacokinetics studies indicated that erythrosin B had a low absorption profile, mice challenged by a lethal dose of ZIKV showed a significantly improved survival rate upon oral administration of erythrosin B, compared to vehicle control. Limited structure-activity relationship studies indicated that most analogs of erythrosin B with modifications on the xanthene ring led to loss or reduction of inhibitory activities towards viral NS2B-NS3 interactions, protease activity and antiviral efficacy. In contrast, introducing chlorine substitutions on the isobenzofuran ring led to slightly increased activities, suggesting that the isobenzofuran ring is well tolerated for modifications. Cytotoxicity studies indicated that all derivatives are nontoxic to human cells. Overall, our studies demonstrated erythrosin B is an effective antiviral against ZIKV both in vitro and in vivo.

5.
Emerg Microbes Infect ; 11(1): 741-748, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35179429

RESUMEN

We report surveillance results of Cache Valley virus (CVV; Peribunyaviridae, Orthobunyavirus) from 2017 to 2020 in New York State (NYS). Infection rates were calculated using the maximum likelihood estimation (MLE) method by year, region, and mosquito species. The highest infection rates were identified among Anopheles spp. mosquitoes and we detected the virus in Aedes albopictus for the first time in NYS. Based on our previous Anopheles quadrimaculatus vector competence results for nine CVV strains, we selected among them three stains for further characterization. These include two CVV reassortants (PA and 15041084) and one CVV lineage 2 strain (Hu-2011). We analyzed full genomes, compared in vitro growth kinetics and assessed vector competence of Aedes albopictus. Sequence analysis of the two reassortant strains (PA and 15041084) revealed 0.3%, 0.4%, and 0.3% divergence; and 1, 10, and 6 amino acid differences for the S, M, and L segments, respectively. We additionally found that the PA strain was attenuated in vertebrate (Vero) and mosquito (C6/36) cell culture. Furthemore, Ae. albopictus mosquitoes are competent vectors for CVV Hu-2011 (16.7-62.1% transmission rates) and CVV 15041084 (27.3-48.0% transmission rates), but not for the human reassortant (PA) isolate, which did not disseminate from the mosquito midgut. Together, our results demonstrate significant phenotypic variability among strains and highlight the capacity for Ae. albopictus to act as a vector of CVV.


Asunto(s)
Aedes , Virus Bunyamwera , Animales , Virus Bunyamwera/genética , Vectores de Enfermedades , Humanos , Mosquitos Vectores , New York
6.
Nat Protoc ; 17(2): 282-326, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35013618

RESUMEN

Emerging viral diseases can substantially threaten national and global public health. Central to our ability to successfully tackle these diseases is the need to quickly detect the causative virus and neutralize it efficiently. Here we present the rational design of DNA nanostructures to inhibit dengue virus infection. The designer DNA nanostructure (DDN) can bind to complementary epitopes on antigens dispersed across the surface of a viral particle. Since these antigens are arranged in a defined geometric pattern that is unique to each virus, the structure of the DDN is designed to mirror the spatial arrangement of antigens on the viral particle, providing very high viral binding avidity. We describe how available structural data can be used to identify unique spatial patterns of antigens on the surface of a viral particle. We then present a procedure for synthesizing DDNs using a combination of in silico design principles, self-assembly, and characterization using gel electrophoresis, atomic force microscopy and surface plasmon resonance spectroscopy. Finally, we evaluate the efficacy of a DDN in inhibiting dengue virus infection via plaque-forming assays. We expect this protocol to take 2-3 d to complete virus antigen pattern identification from existing cryogenic electron microscopy data, ~2 weeks for DDN design, synthesis, and virus binding characterization, and ~2 weeks for DDN cytotoxicity and antiviral efficacy assays.


Asunto(s)
Nanoestructuras
7.
Emerg Infect Dis ; 28(2): 303-313, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35075998

RESUMEN

Cache Valley virus (CVV) is a mosquitoborne virus that infects livestock and humans. We report results of surveillance for CVV in New York, USA, during 2000-2016; full-genome analysis of selected CVV isolates from sheep, horse, humans, and mosquitoes from New York and Canada; and phenotypic characterization of selected strains. We calculated infection rates by using the maximum-likelihood estimation method by year, region, month, and mosquito species. The highest maximum-likelihood estimations were for Anopheles spp. mosquitoes. Our phylogenetic analysis identified 2 lineages and found evidence of segment reassortment. Furthermore, our data suggest displacement of CVV lineage 1 by lineage 2 in New York and Canada. Finally, we showed increased vector competence of An. quadrimaculatus mosquitoes for lineage 2 strains of CVV compared with lineage 1 strains.


Asunto(s)
Anopheles , Virus Bunyamwera , Animales , Virus Bunyamwera/genética , Caballos , Mosquitos Vectores , New York/epidemiología , Filogenia , Ovinos
8.
Virology ; 567: 1-14, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34933176

RESUMEN

The coronavirus nucleocapsid (N) protein comprises two RNA-binding domains connected by a central spacer, which contains a serine- and arginine-rich (SR) region. The SR region engages the largest subunit of the viral replicase-transcriptase, nonstructural protein 3 (nsp3), in an interaction that is essential for efficient initiation of infection by genomic RNA. We carried out an extensive genetic analysis of the SR region of the N protein of mouse hepatitis virus in order to more precisely define its role in RNA synthesis. We further examined the N-nsp3 interaction through construction of nsp3 mutants and by creation of an interspecies N protein chimera. Our results indicate a role for the central spacer as an interaction hub of the N molecule that is partially regulated by phosphorylation. These findings are discussed in relation to the recent discovery that nsp3 forms a molecular pore in the double-membrane vesicles that sequester the coronavirus replicase-transcriptase.


Asunto(s)
Proteínas de la Nucleocápside de Coronavirus/metabolismo , Membranas Intracelulares/metabolismo , Proteinas del Complejo de Replicasa Viral/metabolismo , Secuencias de Aminoácidos , Animales , Línea Celular , Proteínas de la Nucleocápside de Coronavirus/química , Proteínas de la Nucleocápside de Coronavirus/genética , ARN Polimerasa Dependiente de ARN de Coronavirus/química , ARN Polimerasa Dependiente de ARN de Coronavirus/genética , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Ratones , Virus de la Hepatitis Murina , Mutación , Unión Proteica , Dominios Proteicos , ARN Viral/biosíntesis , Proteinas del Complejo de Replicasa Viral/química , Proteinas del Complejo de Replicasa Viral/genética , Compartimentos de Replicación Viral/metabolismo
9.
Parasit Vectors ; 14(1): 573, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34772442

RESUMEN

BACKGROUND: Vector-borne pathogens must survive and replicate in the hostile environment of an insect's midgut before successful dissemination. Midgut microbiota interfere with pathogen infection by activating the basal immunity of the mosquito and by synthesizing pathogen-inhibitory metabolites. METHODS: The goal of this study was to assess the influence of Zika virus (ZIKV) infection and increased temperature on Aedes albopictus midgut microbiota. Aedes albopictus were reared at diurnal temperatures of day 28 °C/night 24 °C (L) or day 30 °C/night 26 °C (M). The mosquitoes were given infectious blood meals with 2.0 × 108 PFU/ml ZIKV, and 16S rRNA sequencing was performed on midguts at 7 days post-infectious blood meal exposure. RESULTS: Our findings demonstrate that Elizabethkingia anophelis albopictus was associated with Ae. albopictus midguts exposed to ZIKV infectious blood meal. We observed a negative correlation between ZIKV and E. anophelis albopictus in the midguts of Ae. albopictus. Supplemental feeding of Ae. albopictus with E. anophelis aegypti and ZIKV resulted in reduced ZIKV infection rates. Reduced viral loads were detected in Vero cells that were sequentially infected with E. anophelis aegypti and ZIKV, dengue virus (DENV), or chikungunya virus (CHIKV). CONCLUSIONS: Our findings demonstrate the influence of ZIKV infection and temperature on the Ae. albopictus microbiome along with a negative correlation between ZIKV and E. anophelis albopictus. Our results have important implications for controlling vector-borne pathogens.


Asunto(s)
Aedes/microbiología , Aedes/virología , Flavobacteriaceae/fisiología , Mosquitos Vectores/microbiología , Mosquitos Vectores/virología , Virus Zika/fisiología , Animales , Flavobacteriaceae/genética , Humanos , Temperatura , Virus Zika/genética , Infección por el Virus Zika/transmisión , Infección por el Virus Zika/virología
10.
Viruses ; 13(10)2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34696323

RESUMEN

West Nile virus (WNV, Flaviviridae, Flavivirus) is a mosquito-borne flavivirus introduced to North America in 1999. Since 1999, the Earth's average temperature has increased by 0.6 °C. Mosquitoes are ectothermic organisms, reliant on environmental heat sources. Temperature impacts vector-virus interactions which directly influence arbovirus transmission. RNA viral replication is highly error-prone and increasing temperature could further increase replication rates, mutation frequencies, and evolutionary rates. The impact of temperature on arbovirus evolutionary trajectories and fitness landscapes has yet to be sufficiently studied. To investigate how temperature impacts the rate and extent of WNV evolution in mosquito cells, WNV was experimentally passaged 12 times in Culex tarsalis cells, at 25 °C and 30 °C. Full-genome deep sequencing was used to compare genetic signatures during passage, and replicative fitness was evaluated before and after passage at each temperature. Our results suggest adaptive potential at both temperatures, with unique temperature-dependent and lineage-specific genetic signatures. Further, higher temperature passage was associated with significantly increased replicative fitness at both temperatures and increases in nonsynonymous mutations. Together, these data indicate that if similar selective pressures exist in natural systems, increases in temperature could accelerate emergence of high-fitness strains with greater phenotypic plasticity.


Asunto(s)
Adaptación Fisiológica/genética , Culicidae/virología , Evolución Molecular Dirigida/métodos , Variación Genética , Interacciones Microbiota-Huesped , Calor , Virus del Nilo Occidental/genética , Animales , Culicidae/citología , Mosquitos Vectores/virología , ARN Viral/genética , Replicación Viral/genética , Replicación Viral/fisiología , Fiebre del Nilo Occidental/transmisión , Fiebre del Nilo Occidental/virología
11.
Nano Lett ; 21(5): 2272-2280, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33635655

RESUMEN

To effectively track and eliminate COVID-19, it is critical to develop tools for rapid and accessible diagnosis of actively infected individuals. Here, we introduce a single-walled carbon nanotube (SWCNT)-based optical sensing approach toward this end. We construct a nanosensor based on SWCNTs noncovalently functionalized with ACE2, a host protein with high binding affinity for the SARS-CoV-2 spike protein. The presence of the SARS-CoV-2 spike protein elicits a robust, 2-fold nanosensor fluorescence increase within 90 min of spike protein exposure. We characterize the nanosensor stability and sensing mechanism and passivate the nanosensor to preserve sensing response in saliva and viral transport medium. We further demonstrate that these ACE2-SWCNT nanosensors retain sensing capacity in a surface-immobilized format, exhibiting a 73% fluorescence turn-on response within 5 s of exposure to 35 mg/L SARS-CoV-2 virus-like particles. Our data demonstrate that ACE2-SWCNT nanosensors can be developed into an optical tool for rapid SARS-CoV-2 detection.


Asunto(s)
Técnicas Biosensibles/métodos , Prueba de COVID-19/métodos , COVID-19/diagnóstico , COVID-19/virología , Nanotubos de Carbono , SARS-CoV-2/química , Glicoproteína de la Espiga del Coronavirus/análisis , Enzima Convertidora de Angiotensina 2/metabolismo , Antígenos Virales/análisis , Humanos , Proteínas Inmovilizadas/metabolismo , Nanotecnología , Pandemias , Unión Proteica , SARS-CoV-2/inmunología , Espectrometría de Fluorescencia , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo
12.
Front Microbiol ; 11: 559035, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33133033

RESUMEN

Rapid and significant range expansion of both the Zika virus (ZIKV) and its Aedes vector species has resulted in the declaration of ZIKV as a global health threat. Successful transmission of ZIKV by its vector requires a complex series of interactions between these entities including the establishment, replication and dissemination of the virus within the mosquito. The metabolic conditions within the mosquito tissues play a critical role in mediating the crucial processes of viral infection and replication and represent targets for prevention of virus transmission. In this study, we carried out a comprehensive metabolomic phenotyping of ZIKV infected and uninfected Ae. albopictus by untargeted analysis of primary metabolites, lipids and biogenic amines. We performed a comparative metabolomic study of infection state with the aim of understanding the biochemical changes resulting from the interaction between the ZIKV and its vector. We have demonstrated that ZIKV infection results in changes to the cellular metabolic environment including a significant enrichment of inosine and pseudo-uridine (Ψ) levels which may be associated with RNA editing activity. In addition, infected mosquitoes demonstrate a hypoglycemic phenotype and show significant increases in the abundance of metabolites such as prostaglandin H2, leukotriene D4 and protoporphyrinogen IX which are associated with antiviral activity. These provide a basis for understanding the biochemical response to ZIKV infection and pathology in the vector. Future mechanistic studies targeting these ZIKV infection responsive metabolites and their associated biosynthetic pathways can provide inroads to identification of mosquito antiviral responses with infection blocking potential.

13.
medRxiv ; 2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33173881

RESUMEN

To effectively track and eliminate COVID-19, it is critical to develop tools for rapid and accessible diagnosis of actively infected individuals. Here, we introduce a single-walled carbon nanotube (SWCNT)-based optical sensing approach towards these ends. We construct a nanosensor based on SWCNTs noncovalently functionalized with ACE2, a host protein with high binding affinity for the SARS-CoV-2 spike protein. Presence of the SARS-CoV-2 spike protein elicits a robust, two-fold nanosensor fluorescence increase within 90 min of spike protein exposure. We characterize the nanosensor stability and sensing mechanism, and passivate the nanosensor to preserve sensing response in saliva and viral transport medium. We further demonstrate that these ACE2-SWCNT nanosensors retain sensing capacity in a surface-immobilized format, exhibiting a 73% fluorescence turn-on response within 5 s of exposure to 35 mg/L SARS-CoV-2 virus-like particles. Our data demonstrate that ACE2-SWCNT nanosensors can be developed into an optical tool for rapid SARS-CoV-2 detection.

14.
Emerg Microbes Infect ; 9(1): 2404-2416, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33078696

RESUMEN

Many flaviviruses including the Dengue virus (DENV), Zika virus (ZIKV), West Nile virus, Yellow Fever virus, and Japanese encephalitis virus are significant human pathogens, unfortunately without any specific therapy. Here, we demonstrate that methylene blue, an FDA-approved drug, is a broad-spectrum and potent antiviral against Zika virus and Dengue virus both in vitro and in vivo. We found that methylene blue can considerably inhibit the interactions between viral protease NS3 and its NS2B co-factor, inhibit viral protease activity, inhibit viral growth, protect 3D mini-brain organoids from ZIKV infection, and reduce viremia in a mouse model. Mechanistic studies confirmed that methylene blue works in both entry and post entry steps, reduces virus production in replicon cells and inhibited production of processed NS3 protein. Overall, we have shown that methylene blue is a potent antiviral for management of flavivirus infections, particularly for Zika virus. As an FDA-approved drug, methylene blue is well-tolerated for human use. Therefore, methylene blue represents a promising and easily developed therapy for management of infections by ZIKV and other flaviviruses.


Asunto(s)
Antivirales/administración & dosificación , Azul de Metileno/administración & dosificación , Inhibidores de Proteasas/administración & dosificación , Infección por el Virus Zika/tratamiento farmacológico , Virus Zika/crecimiento & desarrollo , Células A549 , Administración Oral , Animales , Antivirales/farmacología , Línea Celular , Virus del Dengue/efectos de los fármacos , Virus del Dengue/genética , Virus del Dengue/crecimiento & desarrollo , Modelos Animales de Enfermedad , Regulación Viral de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Azul de Metileno/farmacología , Ratones , Inhibidores de Proteasas/farmacología , Unión Proteica/efectos de los fármacos , ARN Helicasas/metabolismo , Serina Endopeptidasas/metabolismo , Carga Viral/efectos de los fármacos , Proteínas no Estructurales Virales/metabolismo , Proteínas Virales/metabolismo , Internalización del Virus/efectos de los fármacos , Virus Zika/efectos de los fármacos , Virus Zika/genética
15.
PLoS Pathog ; 16(10): e1008951, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33052957

RESUMEN

Both mosquito species-specific differences and virus strain -specific differences impact vector competence. Previous results in our laboratory with individual populations of N. American mosquitoes support studies suggesting Aedes aegypti are more competent than Ae. albopictus for American Zika virus (ZIKV) strains and demonstrate that U.S. Ae. albopictus have higher competence for an ancestral Asian ZIKV strain. A982V, an amino acid substitution in the NS1 gene acquired prior to the American outbreak, has been shown to increase competence in Ae. aegypti. We hypothesized that variability in the NS1 could therefore contribute to species-specific differences and developed a reverse genetics system based on a 2016 ZIKV isolate from Honduras (ZIKV-WTic) to evaluate the phenotypic correlates of individual amino acid substitutions. In addition to A982V, we evaluated G894A, which was acquired during circulation in the Americas. Reversion of 982 and 894 to ancestral residues increased infectivity, transmissibility and viral loads in Ae. albopictus but had no effect on competence or replication in Ae. aegypti. In addition, while host cell-specific differences in NS1 secretion were measured, with significantly higher secretion in mammalian cells relative to mosquito cells, strain-specific differences in secretion were not detected, despite previous reports. These results demonstrate that individual mutations in NS1 can influence competence in a species-specific manner independent of differences in NS1 secretion and further indicate that ancestral NS1 residues confer increased competence in Ae. albopictus. Lastly, experimental infections of Ifnar1-/- mice demonstrated that these NS1 substitutions can influence viral replication in the host and, specifically, that G894A could represent a compensatory change following a fitness loss from A982V with some viral genetic backgrounds. Together these data suggest a possible role for epistatic interactions in ZIKV fitness in invertebrate and vertebrate hosts and demonstrate that strains with increased transmission potential in U.S. Ae. albopictus could emerge.


Asunto(s)
Aedes/virología , Interacciones Huésped-Patógeno , Mosquitos Vectores/virología , Carga Viral , Proteínas no Estructurales Virales/genética , Infección por el Virus Zika/transmisión , Infección por el Virus Zika/virología , Animales , Chlorocebus aethiops , Femenino , Ratones , Ratones Noqueados , Mutación , Receptor de Interferón alfa y beta/fisiología , Células Vero , Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Virus Zika/clasificación , Virus Zika/genética
16.
ACS Infect Dis ; 6(10): 2616-2628, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32866370

RESUMEN

Flaviviruses causes significant human disease. Recent outbreaks of the Zika virus highlight the need to develop effective therapies for this class of viruses. Previously we identified niclosamide as a broad-spectrum inhibitor for flaviviruses by targeting the interface between viral protease NS3 and its cofactor NS2B. Here, we screened a small library of niclosamide derivatives and identified a new analogue with improved pharmacokinetic properties. Compound JMX0207 showed improved efficacy in inhibition of the molecular interaction between NS3 and NS2B, better inhibition of viral protease function, and enhanced antiviral efficacy in the cell-based antiviral assay. The derivative also significantly reduced Zika virus infection on 3D mini-brain organoids derived from pluripotent neural stem cells. Intriguingly, the compound significantly reduced viremia in a Zika virus (ZIKV) animal model. In summary, a niclosamide derivative, JMX0207, was identified, which shows improved pharmacokinetics and efficacy against Zika virus both in vitro and in vivo.


Asunto(s)
Flavivirus , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Niclosamida/farmacología , Proteínas no Estructurales Virales , Infección por el Virus Zika/tratamiento farmacológico
17.
Toxicol Appl Pharmacol ; 393: 114941, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32126212

RESUMEN

Incidence of nonalcoholic fatty liver disease is increasing worldwide. Activation of the NLRP3 inflammasome is central to the development of diet-induced nonalcoholic steatohepatitis (NASH). We investigated whether benzyl isothiocyanate (BITC) ameliorates diet-induced NASH and the mechanisms involved. C57BL/6 J mice fed a high-fat diet containing cholesterol and cholic acid (HFCCD) and Kupffer cells stimulated with LPS and cholesterol crystals (CC) were studied. LPS/CC increased the expression of the active form of caspase 1 (p20) and the secretion of IL-1ß by Kupffer cells, and these changes were reversed by MCC950, an NLRP3 inflammasome inhibitor. LPS/CC-induced NLRP3 inflammasome activation and IL-1ß production were dose-dependently attenuated by BITC. BITC decreased cathepsin B release from lysosomes and binding to NLRP3 induced by LPS/CC. Compared with a normal diet, the HFCCD increased serum levels of ALT, AST, total cholesterol, and IL-1ß and hepatic contents of triglycerides and total cholesterol. BITC administration (0.1% in diet) reversed the increase in AST and hepatic triglycerides in the HFCCD group. Moreover, BITC suppressed lipid accumulation, macrophage infiltration, fibrosis, crown-like structure formation, and p20 caspase 1 and p17 IL-1ß expression in liver in the HFCCD group. These results suggest that BITC ameliorates HFCCD-induced steatohepatitis by inhibiting the activation of NLRP3 inflammasome in Kupffer cells and may protect against diet-induced NASH.


Asunto(s)
Colesterol en la Dieta/efectos adversos , Colesterol/química , Ácido Cólico/efectos adversos , Dieta Alta en Grasa/efectos adversos , Inflamasomas/efectos de los fármacos , Isotiocianatos/uso terapéutico , Macrófagos del Hígado/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Animales , Colesterol/sangre , Relación Dosis-Respuesta a Droga , Interleucina-1beta/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Pruebas de Función Hepática , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/etiología , Triglicéridos/metabolismo
18.
Emerg Microbes Infect ; 9(1): 67-77, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31894724

RESUMEN

Rapid and significant range expansion of both Zika virus (ZIKV) and its Aedes vector species has resulted in ZIKV being declared a global health threat. Mean temperatures are projected to increase globally, likely resulting in alterations of the transmission potential of mosquito-borne pathogens. To understand the effect of diurnal temperature range on the vectorial capacity of Ae. aegypti and Ae. albopictus for ZIKV, longevity, blood-feeding and vector competence were assessed at two temperature regimes following feeding on infectious blood meals. Higher temperatures resulted in decreased longevity of Ae. aegypti [Log-rank test, χ2, df 35.66, 5, P < 0.001] and a decrease in blood-feeding rates of Ae. albopictus [Fisher's exact test, P < 0.001]. Temperature had a population and species-specific impact on ZIKV infection rates. Overall, Ae. albopictus reared at the lowest temperature regime demonstrated the highest vectorial capacity (0.53) and the highest transmission efficiency (57%). Increased temperature decreased vectorial capacity across groups yet more significant effects were measured with Ae. aegypti relative to Ae. albopictus. The results of this study suggest that future increases in temperature in the Americas could significantly impact vector competence, blood-feeding and longevity, and potentially decrease the overall vectorial capacity of Aedes mosquitoes in the Americas.


Asunto(s)
Aedes/virología , Cambio Climático , Mosquitos Vectores/virología , Infección por el Virus Zika/transmisión , Aedes/clasificación , Animales , Sangre , Conducta Alimentaria , Femenino , Florida , México , Mosquitos Vectores/fisiología , New York , Temperatura
20.
Nat Chem ; 12(1): 26-35, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31767992

RESUMEN

DNA, when folded into nanostructures with a specific shape, is capable of spacing and arranging binding sites into a complex geometric pattern with nanometre precision. Here we demonstrate a designer DNA nanostructure that can act as a template to display multiple binding motifs with precise spatial pattern-recognition properties, and that this approach can confer exceptional sensing and potent viral inhibitory capabilities. A star-shaped DNA architecture, carrying five molecular beacon-like motifs, was constructed to display ten dengue envelope protein domain III (ED3)-targeting aptamers into a two-dimensional pattern precisely matching the spatial arrangement of ED3 clusters on the dengue (DENV) viral surface. The resulting multivalent interactions provide high DENV-binding avidity. We show that this structure is a potent viral inhibitor and that it can act as a sensor by including a fluorescent output to report binding. Our molecular-platform design strategy could be adapted to detect and combat other disease-causing pathogens by generating the requisite ligand patterns on customized DNA nanoarchitectures.


Asunto(s)
Aptámeros de Nucleótidos/farmacología , ADN/farmacología , Virus del Dengue/efectos de los fármacos , Virus del Dengue/aislamiento & purificación , Nanoestructuras/química , Animales , Aptámeros de Nucleótidos/química , Bencimidazoles/química , Chlorocebus aethiops , ADN/química , Virus del Dengue/química , Fluoresceínas/química , Colorantes Fluorescentes/química , Células Hep G2 , Humanos , Pruebas de Sensibilidad Microbiana , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Dominios Proteicos , Células Vero , Proteínas del Envoltorio Viral/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA