Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Neurobiol Dis ; 150: 105244, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33385516

RESUMEN

There is a growing body of evidence demonstrating the significant involvement of the sigma-1 chaperone protein in the modulation of seizures. Several sigma-1 receptor (Sig1R) ligands have been demonstrated to regulate the seizure threshold in acute and chronic seizure models. However, the mechanism by which Sig1R modulates the excitatory and inhibitory pathways in the brain has not been elucidated. The aim of this study was to compare the susceptibility to seizures of wild type (WT) and Sig1R knockout (Sig1R-/-) mice in intravenous pentylenetetrazol (PTZ) and (+)-bicuculline (BIC) infusion-induced acute seizure and Sig1R antagonist NE-100-induced seizure models. To determine possible molecular mechanisms, we used quantitative PCR, Western blotting and immunohistochemistry to assess the possible involvement of several seizure-related genes and proteins. Peripheral tissue contractile response of WT and Sig1R-/- mice was studied in an isolated vasa deferentia model. The most important finding was the significantly decreased expression of the R2 subunit of the GABA-B receptor in the hippocampus and habenula of Sig1R-/- mice. Our results demonstrated that Sig1R-/- mice have decreased thresholds for PTZ- and BIC-induced tonic seizures. In the NE-100-induced seizure model, Sig1R-/- animals demonstrated lower seizure scores, shorter durations and increased latency times of seizures compared to WT mice. Sig1R-independent activities of NE-100 included downregulation of the gene expression of iNOS and GABA-A γ2 and inhibition of KCl-induced depolarization in both WT and Sig1R-/- animals. In conclusion, the results of this study indicate that the lack of Sig1R resulted in decreased expression of the R2 subunit of the GABA-B receptor and increased susceptibility to seizures. Our results confirm that Sig1R is a significant molecular target for seizure modulation and warrants further investigation for the development of novel anti-seizure drugs.


Asunto(s)
Convulsivantes/toxicidad , Habénula/metabolismo , Hipocampo/metabolismo , Receptores de GABA-B/genética , Receptores sigma/genética , Convulsiones/genética , Animales , Anisoles/toxicidad , Bicuculina/toxicidad , Expresión Génica/efectos de los fármacos , Expresión Génica/genética , Predisposición Genética a la Enfermedad , Habénula/efectos de los fármacos , Hipocampo/efectos de los fármacos , Ratones , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo II/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo II/genética , Pentilenotetrazol/toxicidad , Propilaminas/toxicidad , Receptores de GABA-A/efectos de los fármacos , Receptores de GABA-A/genética , Receptores de GABA-B/metabolismo , Convulsiones/inducido químicamente , Receptor Sigma-1
2.
Eur J Neurol ; 28(3): 974-981, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33340200

RESUMEN

BACKGROUND AND PURPOSE: Charcot-Marie-Tooth (CMT) disease is a chronic, slowly progressing disorder. The lack of specific disease progression biomarkers limits the execution of clinical trials. However, neurofilament light chain (NfL) has been suggested as a potential biomarker for peripheral nervous system disorders. METHODS: Ninety-six CMT disease patients and 60 healthy controls were enrolled in the study. Disease severity assessment included clinical evaluation with CMT Neuropathy Score version 2 (CMTNSv2). Blood plasma NfL concentrations were measured using the single-molecule array NfL assay. RESULTS: The NfL concentration was significantly higher in the CMT disease patient group than in the controls (p < 0.001). Of the CMT disease patients, those with type CMTX1 had a higher NfL level than those in the two other analysed subgroups (CMT1A and other CMT disease types) (p = 0.0498). The NfL concentration had a significant but weak correlation with the CMTNSv2 (rs  = 0.25, p = 0.012). In one CMT disease patient with an extremely elevated NfL level, overlap with chronic inflammatory demyelinating polyneuropathy was suspected. Receiver operating characteristic analysis showed that an NfL concentration of 8.9 pg/ml could be used to discriminate CMT disease patients from controls, with an area under the curve of 0.881. CONCLUSIONS: Our study confirmed that the plasma NfL concentration is significantly higher in CMT disease patients than in controls. Plasma NfL concentration was found to significantly, albeit weakly, reflect the clinical severity of CMT disease. In the future, NfL may be used, either individually or collaboratively, as a biomarker in the clinical context of suspected CMT disease; however, several issues need to be addressed first.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Biomarcadores , Enfermedad de Charcot-Marie-Tooth/diagnóstico , Humanos , Filamentos Intermedios , Proteínas de Neurofilamentos , Plasma , Curva ROC
3.
Oxid Med Cell Longev ; 2020: 9364598, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33274011

RESUMEN

Altered neuronal Ca2+ homeostasis and mitochondrial dysfunction play a central role in the pathogenesis of traumatic brain injury (TBI). R-Phenibut ((3R)-phenyl-4-aminobutyric acid) is an antagonist of the α 2 δ subunit of voltage-dependent calcium channels (VDCC) and an agonist of gamma-aminobutyric acid B (GABA-B) receptors. The aim of this study was to evaluate the potential therapeutic effects of R-phenibut following the lateral fluid percussion injury (latFPI) model of TBI in mice and the impact of R- and S-phenibut on mitochondrial functionality in vitro. By determining the bioavailability of R-phenibut in the mouse brain tissue and plasma, we found that R-phenibut (50 mg/kg) reached the brain tissue 15 min after intraperitoneal (i.p.) and peroral (p.o.) injections. The maximal concentration of R-phenibut in the brain tissues was 0.6 µg/g and 0.2 µg/g tissue after i.p. and p.o. administration, respectively. Male Swiss-Webster mice received i.p. injections of R-phenibut at doses of 10 or 50 mg/kg 2 h after TBI and then once daily for 7 days. R-Phenibut treatment at the dose of 50 mg/kg significantly ameliorated functional deficits after TBI on postinjury days 1, 4, and 7. Seven days after TBI, the number of Nissl-stained dark neurons (N-DNs) and interleukin-1beta (IL-1ß) expression in the cerebral neocortex in the area of cortical impact were reduced. Moreover, the addition of R- and S-phenibut at a concentration of 0.5 µg/ml inhibited calcium-induced mitochondrial swelling in the brain homogenate and prevented anoxia-reoxygenation-induced increases in mitochondrial H2O2 production and the H2O2/O ratio. Taken together, these results suggest that R-phenibut could serve as a neuroprotective agent and promising drug candidate for treating TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Peróxido de Hidrógeno/metabolismo , Mitocondrias , Neocórtex , Neuronas , Ácido gamma-Aminobutírico/análogos & derivados , Animales , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Masculino , Ratones , Ratones Endogámicos ICR , Mitocondrias/metabolismo , Mitocondrias/patología , Neocórtex/metabolismo , Neocórtex/patología , Neuronas/metabolismo , Neuronas/patología , Ácido gamma-Aminobutírico/farmacología
4.
Pharmacopsychiatry ; 53(5): 201-208, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32340063

RESUMEN

Phenibut is a nootropic drug that exerts anxiolytic and antinociceptive effects by acting on the GABAB receptor and the α2-δ subunit of voltage-dependent calcium channels. An increased number of reports of dependence to and intoxication by phenibut purchased online on the one hand and the wide prescription of phenibut in Eastern Europe for more than half a century on the other hand have resulted in a number of controversies regarding its use. In this review, we have summarized currently available information from case reports of phenibut dependence and intoxication and safety data from clinical trials. We included 14 dependence and intoxication case reports (16 patients) and reviewed 11 phenibut clinical trials (583 patients). The clinical symptoms in the case reports included cardiovascular effects, insomnia, anxiety and agitation, hallucinations, and depressed level of consciousness. In addition, the doses used (0.5-100 g/day) were much higher than the recommended daily dose (0.25-2 g/day). An analysis of phenibut side effects described in the clinical trials showed adverse events in only 5.66% of patients, and the most reported side effect was somnolence (1.89%). There are discrepancies in the reported side effects of phenibut in clinical trials compared to those reported in cases of online-purchased phenibut dependence and intoxication. The current systematic review provides evidence that, at therapeutic doses, phenibut is safe and well tolerated with minor adverse effects, but questions regarding the quality of phenibut obtained online and the contribution of alcohol and other drug abuse to phenibut dependence and intoxication remain open.


Asunto(s)
Ansiolíticos/efectos adversos , Nootrópicos/efectos adversos , Ácido gamma-Aminobutírico/análogos & derivados , Ansiolíticos/uso terapéutico , Humanos , Nootrópicos/envenenamiento , Nootrópicos/uso terapéutico , Trastornos Relacionados con Sustancias , Ácido gamma-Aminobutírico/efectos adversos , Ácido gamma-Aminobutírico/envenenamiento , Ácido gamma-Aminobutírico/uso terapéutico
5.
J Neurotrauma ; 37(2): 295-304, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31441378

RESUMEN

The weight-drop model is used widely to replicate closed-head injuries in mice; however, the histopathological and functional outcomes may vary significantly between laboratories. Because skull fractures are reported to occur in this model, we aimed to evaluate whether these breaks may influence the variability of the weight-drop (WD) model. Male Swiss Webster mice underwent WD injury with either a 2 or 5 mm cone tip, and behavior was assessed at 2 h and 24 h thereafter using the neurological severity score. The expression of interleukin (IL)-6, IL-1ß, tumor necrosis factor-α, matrix metalloproteinase-9, and tissue inhibitor of metalloproteinase-1 genes was measured at 12 h and 1, 3, and 14 days after injury. Before the injury, micro-computed tomography (micro-CT) was performed to quantify skull thickness at the impact site. With a conventional tip diameter of 2 mm, 33% of mice showed fractures of the parietal bone; the 5 mm tip produced only 10% fractures. Compared with mice without fractures, mice with fractures had a severity-dependent worse functional outcome and a more pronounced upregulation of inflammatory genes in the brain. Older mice were associated with thicker parietal bones and were less prone to skull fractures. In addition, mice that underwent traumatic brain injury (TBI) with skull fracture had macroscopic brain damage because of skull depression. Skull fractures explain a considerable proportion of the variability observed in the WD model in mice-i.e., mice with skull fractures have a much stronger inflammatory response than do mice without fractures. Using older mice with thicker skull bones and an impact cone with a larger diameter reduces the rate of skull fractures and the variability in this very useful closed-head TBI model.


Asunto(s)
Lesiones Traumáticas del Encéfalo/etiología , Modelos Animales de Enfermedad , Traumatismos Cerrados de la Cabeza/complicaciones , Inflamación/etiología , Fracturas Craneales/etiología , Animales , Masculino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA