Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 826, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280874

RESUMEN

Silicon microring modulator plays a critical role in energy-efficient optical interconnect and optical computing owing to its ultra-compact footprint and capability for on-chip wavelength-division multiplexing. However, existing silicon microring modulators usually require more than 2 V of driving voltage (Vpp), which is limited by both material properties and device structures. Here, we present a metal-oxide-semiconductor capacitor microring modulator through heterogeneous integration between silicon photonics and titanium-doped indium oxide, which is a high-mobility transparent conductive oxide (TCO) with a strong plasma dispersion effect. The device is co-fabricated by Intel's photonics fab and our in-house TCO patterning processes, which exhibits a high modulation efficiency of 117 pm/V and consequently can be driven by a very low Vpp of 0.8 V. At a 11 GHz modulation bandwidth where the modulator is limited by the RC bandwidth, we obtained 25 Gb/s clear eye diagrams with energy efficiency of 53 fJ/bit.

2.
Sci Rep ; 13(1): 5269, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37002281

RESUMEN

Silicon microring resonators (Si-MRRs) play essential roles in on-chip wavelength division multiplexing (WDM) systems due to their ultra-compact size and low energy consumption. However, the resonant wavelength of Si-MRRs is very sensitive to temperature fluctuations and fabrication process variation. Typically, each Si-MRR in the WDM system requires precise wavelength control by free carrier injection using PIN diodes or thermal heaters that consume high power. This work experimentally demonstrates gate-tuning on-chip WDM filters for the first time with large wavelength coverage for the entire channel spacing using a Si-MRR array driven by high mobility titanium-doped indium oxide (ITiO) gates. The integrated Si-MRRs achieve unprecedented wavelength tunability up to 589 pm/V, or VπL of 0.050 V cm with a high-quality factor of 5200. The on-chip WDM filters, which consist of four cascaded ITiO-driven Si-MRRs, can be continuously tuned across the 1543-1548 nm wavelength range by gate biases with near-zero power consumption.

3.
ACS Nano ; 14(10): 14080-14090, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33044054

RESUMEN

The optical and electronic properties of 2D semiconductors are intrinsically linked via the strong interactions between optically excited bound species and free carriers. Here we use near-field scanning microwave microscopy (SMM) to image spatial variations in photoconductivity in MoS2-WS2 lateral multijunction heterostructures using photon energy-resolved narrowband illumination. We find that the onset of photoconductivity in individual domains corresponds to the optical absorption onset, confirming that the tightly bound excitons in transition metal dichalcogenides can nonetheless dissociate into free carriers. These photogenerated carriers are most likely n-type and are seen to persist for up to days. Informed by finite element modeling we reveal that they can increase the carrier density by up to 200 times. This persistent photoconductivity appears to be dominated by contributions from the multilayer MoS2 domains, and we attribute the flake-wide response in part to charge transfer across the heterointerface. Spatial correlation of our SMM imaging with photoluminescence (PL) mapping confirms the strong link between PL peak emission photon energy, PL intensity, and the local accumulated charge. This work reveals the spatially and temporally complex optoelectronic response of these systems and cautions that properties measured during or after illumination may not reflect the true dark state of these materials but rather a metastable charged state.

4.
ACS Nano ; 9(2): 2080-7, 2015 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-25625184

RESUMEN

Tungsten diselenide (WSe2) is a two-dimensional material that is of interest for next-generation electronic and optoelectronic devices due to its direct bandgap of 1.65 eV in the monolayer form and excellent transport properties. However, technologies based on this 2D material cannot be realized without a scalable synthesis process. Here, we demonstrate the first scalable synthesis of large-area, mono and few-layer WSe2 via metal-organic chemical vapor deposition using tungsten hexacarbonyl (W(CO)6) and dimethylselenium ((CH3)2Se). In addition to being intrinsically scalable, this technique allows for the precise control of the vapor-phase chemistry, which is unobtainable using more traditional oxide vaporization routes. We show that temperature, pressure, Se:W ratio, and substrate choice have a strong impact on the ensuing atomic layer structure, with optimized conditions yielding >8 µm size domains. Raman spectroscopy, atomic force microscopy (AFM), and cross-sectional transmission electron microscopy (TEM) confirm crystalline monoto-multilayer WSe2 is achievable. Finally, TEM and vertical current/voltage transport provide evidence that a pristine van der Waals gap exists in WSe2/graphene heterostructures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...