Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
EFSA J ; 21(5): e07990, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37197560

RESUMEN

Groundwater monitoring is the highest tier in the leaching assessment of plant protection products in the EU. The European Commission requested EFSA for a review by the PPR Panel of the scientific paper of Gimsing et al. (2019) on the design and conduct of groundwater monitoring studies. The Panel concludes that this paper provides many recommendations; however, specific guidance on how to design, conduct and evaluate groundwater monitoring studies for regulatory purposes is missing. The Panel notes that there is no agreed specific protection goal (SPG) at EU level. Also, the SPG has not yet been operationalised in an agreed exposure assessment goal (ExAG). The ExAG describes which groundwater needs to be protected, where and when. Because the design and interpretation of monitoring studies depends on the ExAG, development of harmonised guidance is not yet possible. The development of an agreed ExAG must therefore be given priority. A central question in the design and interpretation of groundwater monitoring studies is that of groundwater vulnerability. Applicants must demonstrate that the selected monitoring sites represent realistic worst-case conditions as specified in the ExAG. Guidance and models are needed to support this step. A prerequisite for the regulatory use of monitoring data is the availability of complete data on the use history of the products containing the respective active substances. Applicants must further demonstrate that monitoring wells are hydrologically connected to the fields where the active substance has been applied. Modelling in combination with (pseudo)tracer experiments would be the preferred option. The Panel concludes that well-conducted monitoring studies provide more realistic exposure assessments and can therefore overrule results from lower tier studies. Groundwater monitoring studies involve a high workload for both regulators and applicants. Standardised procedures and monitoring networks could help to reduce this workload.

2.
Chembiochem ; 9(17): 2853-9, 2008 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-18942690

RESUMEN

Plant alpha-type phospholipase D proteins are calcium-dependent, lipolytic enzymes. The morphology of the aggregates of their phospholipid substrate fundamentally defines the interaction between the enzyme and the surface. Here we demonstrate that the Ca(2+)-induced generation of membrane microdomains dramatically activates alpha-type phospholipase D from white cabbage. 500-fold stimulation was observed upon incorporation of 10 mol % 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphate (POPA) into 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) vesicles in the presence of Ca(2+) ions. Enhanced association of PLDalpha2 with phospholipid surfaces containing anionic components was indicated by lag phase analysis and film balance measurements. Differential scanning calorimetry showed that the POPA-specific activation correlates with the phase behavior of the POPC/POPA vesicles in the presence of Ca(2+) ions. We conclude from the results that the Ca(2+)-induced formation of POPA microdomains is the crucial parameter that facilitates the binding of PLD to the phospholipid surface and suggest that this effect serves as a cellular switch for controlling PLD activity.


Asunto(s)
Brassica/enzimología , Cloruro de Calcio/farmacología , Lípidos de la Membrana/química , Microdominios de Membrana , Fosfolipasa D , Rastreo Diferencial de Calorimetría , Microdominios de Membrana/química , Microdominios de Membrana/efectos de los fármacos , Microdominios de Membrana/metabolismo , Transición de Fase , Fosfolipasa D/química , Fosfolipasa D/metabolismo
3.
Protein Eng Des Sel ; 19(10): 443-52, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16845127

RESUMEN

In addition to hydrolysis of glycerophospholipids, phospholipases D (PLDs) catalyze the head group exchange. The molecular basis of this transphosphatidylation potential, which strongly varies for PLDs from different sources, is unknown hitherto. Recently, the genes of two PLD isoenzymes from white cabbage have been sequenced and expressed in Escherchia coli, yielding the basis for mutational studies. In the present paper, three sequence characteristics of the isoenzyme (PLD2) that corresponds to the often used enzyme isolated from cabbage leaves have been probed for their importance in hydrolysis as well as transphosphatidylation activities: (i) the two HKD motifs, (ii) the C terminus and (iii) the eight cysteine residues. All these regions or amino acids are highly conserved in alpha-type plant PLDs. Based on multiple alignments, predictions of secondary structure and comparisons of hydrophobicity profiles, 35 enzyme variants were created and assayed. All positions tested proved to be very sensitive towards amino acid exchanges with respect to hydrolytic activity in the absence of glycerol as well as to the ratio of hydrolytic and transphosphatidylation activities in the presence of glycerol. A significant increase of total activity and transphosphatidylation activity could be obtained by the substitutions C310S and C625S.


Asunto(s)
Brassica/enzimología , Brassica/genética , Fosfolipasa D/química , Fosfolipasa D/genética , Secuencia de Aminoácidos , Clonación Molecular , Biología Computacional , Escherichia coli/metabolismo , Hidrólisis , Modelos Químicos , Datos de Secuencia Molecular , Mutagénesis , Mutación , Proteínas de Plantas/química , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...