Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Obesity (Silver Spring) ; 32(5): 989-998, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38454311

RESUMEN

OBJECTIVE: The objective of this study was to examine associations between umbilical cord mitochondrial DNA copy number (mtDNAcn) and adiposity across childhood. METHODS: In a prospective birth cohort of Dominican and African American children from New York City, New York (1998-2006), mtDNAcn was measured in cord blood. Children (N = 336) were evaluated for their height, weight, and bioimpedance at age 5, 7, 9, and 11 years. We used linear mixed-effects models to assess associations of mtDNAcn tertiles in cord blood with child BMI, BMI z scores, fat mass index, and body fat percentage. Latent class growth models and interactions between mtDNAcn and child age or child age2 were used to assess associations between age and adiposity trajectories. RESULTS: BMI was, on average, 1.5 kg/m2 higher (95% CI: 0.58, 2.5) in individuals with mtDNAcn in the low- compared with the middle-mtDNAcn tertile. Results were similar for BMI z score, fat mass index, and body fat percentage. Moreover, children in the low-mtDNAcn group had increased odds of being in an "increasing" or "high-stable" adiposity class. CONCLUSIONS: Lower mtDNAcn at birth may predict greater childhood adiposity, highlighting the potential key role of perinatal mitochondrial function in adiposity during development.


Asunto(s)
Adiposidad , Índice de Masa Corporal , Variaciones en el Número de Copia de ADN , ADN Mitocondrial , Sangre Fetal , Obesidad Infantil , Humanos , ADN Mitocondrial/sangre , ADN Mitocondrial/genética , Sangre Fetal/metabolismo , Sangre Fetal/química , Adiposidad/genética , Femenino , Masculino , Niño , Preescolar , Estudios Prospectivos , Obesidad Infantil/genética , Obesidad Infantil/sangre , Ciudad de Nueva York , Negro o Afroamericano/genética , Cohorte de Nacimiento , República Dominicana
3.
J Am Heart Assoc ; 13(2): e031256, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38205795

RESUMEN

BACKGROUND: Chronic lead exposure is associated with both subclinical and clinical cardiovascular disease. We evaluated whether declines in blood lead were associated with changes in systolic and diastolic blood pressure in adult American Indian participants from the SHFS (Strong Heart Family Study). METHODS AND RESULTS: Lead in whole blood was measured in 285 SHFS participants in 1997 to 1999 and 2006 to 2009. Blood pressure and measures of cardiac geometry and function were obtained in 2001 to 2003 and 2006 to 2009. We used generalized estimating equations to evaluate the association of declines in blood lead with changes in blood pressure; cardiac function and geometry measures were considered secondary. Mean blood lead was 2.04 µg/dL at baseline. After ≈10 years, mean decline in blood lead was 0.67 µg/dL. In fully adjusted models, the mean difference in systolic blood pressure comparing the highest to lowest tertile of decline (>0.91 versus <0.27 µg/dL) in blood lead was -7.08 mm Hg (95% CI, -13.16 to -1.00). A significant nonlinear association between declines in blood lead and declines in systolic blood pressure was detected, with significant linear associations where blood lead decline was 0.1 µg/dL or higher. Declines in blood lead were nonsignificantly associated with declines in diastolic blood pressure and significantly associated with declines in interventricular septum thickness. CONCLUSIONS: Declines in blood lead levels in American Indian adults, even when small (0.1-1.0 µg/dL), were associated with reductions in systolic blood pressure. These findings suggest the need to further study the cardiovascular impacts of reducing lead exposures and the importance of lead exposure prevention.


Asunto(s)
Enfermedades Cardiovasculares , Hipertensión , Plomo , Adulto , Humanos , Indio Americano o Nativo de Alaska , Presión Sanguínea , Enfermedades Cardiovasculares/complicaciones , Hipertensión/diagnóstico , Hipertensión/epidemiología , Plomo/sangre
4.
Environ Health Perspect ; 131(12): 127016, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38133959

RESUMEN

BACKGROUND: Inorganic arsenic (As) may increase the risk of cardiovascular disease (CVD) and all-cause mortality through accelerated aging, which can be estimated using epigenetic-based measures. OBJECTIVES: We evaluated three DNA methylation-based aging measures (PhenoAge, GrimAge, DunedinPACE) (epigenetic aging measures) as potential mediators of the previously reported association of As exposure with CVD incidence, CVD mortality, and all-cause mortality in the Strong Heart Study (SHS), an epidemiological cohort of American Indian adults. METHODS: Blood DNA methylation and urinary As levels were measured in 2,323 SHS participants (41.5% men, mean age of 55 years old). PhenoAge and GrimAge values were calculated using a residual-based method. We tested the association of urinary As with epigenetic aging measures using linear regression, the association of epigenetic aging measures with the three health outcomes using additive hazards models, and the mediation of As-related CVD incidence, CVD mortality, and all-cause mortality by epigenetic aging measures using the product of coefficients method. RESULTS: SHS participants with higher vs. lower urinary As levels had similar PhenoAge age, older GrimAge age, and faster DunedinPACE. An interquartile range increase in urinary As was associated with higher of PhenoAge age acceleration [mean difference (95% confidence interval)=0.48 (0.17, 0.80) years], GrimAge age acceleration [0.80 (0.60, 1.00) years], and DunedinPACE [0.011 (0.005, 0.018)], after adjusting for age, sex, center location, genetic components, smoking status, and body mass index. Of the 347 incident CVD events per 100,000 person-years associated with a doubling in As exposure, 21.3% (9.1, 57.1) and 22.6% (9.5, 56.9), were attributable to differences in GrimAge and DunedinPACE, respectively. DISCUSSION: Arsenic exposure was associated with older GrimAge and faster DunedinPACE measures of biological age. Furthermore, accelerated biological aging measured from DNA methylation accounted for a relevant fraction of As-associated risk for CVD, CVD mortality, and all-cause mortality in the SHS, supporting the role of As in accelerated aging. Research of the biological underpinnings can contribute to a better understanding of the role of aging in arsenic-related disease. https://doi.org/10.1289/EHP11981.


Asunto(s)
Arsénico , Enfermedades Cardiovasculares , Epigénesis Genética , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Envejecimiento , Indio Americano o Nativo de Alaska , Arsénico/toxicidad , Enfermedades Cardiovasculares/inducido químicamente , Enfermedades Cardiovasculares/epidemiología , Metilación de ADN , Mortalidad
5.
Curr Opin Epidemiol Public Health ; 2(2): 7-17, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38130910

RESUMEN

Purpose of review: The development of biomarkers of aging has greatly advanced epidemiological studies of aging processes. However, much debate remains on the timing of aging onset and the causal relevance of these biomarkers. In this review, we discuss the most recent biomarkers of aging that have been applied across the life course. Recent findings: The most recently developed aging biomarkers that have been applied across the life course can be designated into three categories: epigenetic clocks, epigenetic markers of chronic inflammation, and mitochondrial DNA copy number. While these have been applied at different life stages, the development, validation, and application of these markers has been largely centered on populations of older adults. Few studies have examined trajectories of aging biomarkers across the life course. As the wealth of molecular and biochemical data increases, emerging biomarkers may be able to capture complex and system-specific aging processes. Recently developed biomarkers include novel epigenetic clocks; clocks based on ribosomal DNA, transcriptomic profiles, proteomics, metabolomics, and inflammatory markers; clonal hematopoiesis of indeterminate potential gene mutations; and multi-omics approaches. Summary: Attention should be placed on aging at early and middle life stages to better understand trajectories of aging biomarkers across the life course. Additionally, novel biomarkers will provide greater insight into aging processes. The specific mechanisms of aging reflected by these biomarkers should be considered when interpreting results.

6.
Environ Res Health ; 1(3): 035002, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37692372

RESUMEN

Exposure to ambient and near-roadway air pollution during pregnancy has been linked with several adverse health outcomes for pregnant women and their babies. Emerging research indicates that microRNA (miRNA) expression can be altered by exposure to air pollutants in a variety of tissues. Additionally, miRNAs from breast tissue and circulating miRNAs have previously been proposed as a biomarker for breast cancer diagnosis and prognosis. Therefore, this study sought to evaluate the associations between pregnancy exposures to ambient (PM10, PM2.5, NO2, O3) and near-roadway air pollution (total NOx, freeway NOx, non-freeway NOx) with breast milk extracellular vesicle miRNA (EV-miRNA), measured at 1-month postpartum, in a cohort of 108 Latina women living in Southern California. We found that PM10 exposure during pregnancy was positively associated with hsa-miR-200c-3p, hsa-miR-200b-3p, and hsa-let-7c-5p, and was negatively associated with hsa-miR-378d. We also found that pregnancy PM2.5 exposure was positively associated with hsa-miR-200c-3p and hsa-miR-200b-3p. First and second trimester exposure to PM10 and PM2.5 was associated with several EV-miRNAs with putative messenger RNA targets related to cancer. This study provides preliminary evidence that air pollution exposure during pregnancy is associated with human milk EV-miRNA expression.

7.
Front Immunol ; 14: 1151870, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37492577

RESUMEN

Breast milk contains thousands of bioactive compounds including extracellular vesicle microRNAs (EV-miRNAs), which may regulate pathways such as infant immune system development and metabolism. We examined the associations between the expression of EV-miRNAs and laboratory variables (i.e., batch effects, sample characteristics), sequencing quality indicators, and maternal-infant characteristics. The study included 109 Latino mother-infant dyads from the Southern California Mother's Milk Study. Mothers were age 28.0 ± 5.6 and 23-46 days postpartum. We used principal components analysis to evaluate whether EV-miRNA expression was associated with factors of interest. Then, we used linear models to estimate relationships between these factors and specific EV-miRNA counts and analyzed functional pathways associated with those EV-miRNAs. Finally, we explored which maternal-infant characteristics predicted sequencing quality indicators. Sequencing quality indicators, predominant breastfeeding, and breastfeedings/day were associated with EV-miRNA principal components. Maternal body mass index and breast milk collection timing predicted proportion of unmapped reads. Expression of 2 EV-miRNAs were associated with days postpartum, 23 EV-miRNAs were associated with breast milk collection time, 23 EV-miRNAs were associated with predominant breastfeeding, and 38 EV-miRNAs were associated with breastfeedings/day. These EV-miRNAs were associated with pathways including Hippo signaling pathway and ECM-receptor interaction, among others. This study identifies several important factors that may contribute to breast milk EV-miRNA expression. Future studies should consider these findings in the design and analysis of breast milk miRNA research.


Asunto(s)
MicroARNs , Femenino , Humanos , Lactante , Adulto Joven , Adulto , MicroARNs/metabolismo , Leche Humana/metabolismo , Lactancia Materna , Índice de Masa Corporal , Madres
8.
Environ Int ; 178: 108064, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37364305

RESUMEN

INTRODUCTION: Native American communities suffer disproportionately from elevated metal exposures and increased risk for cardiovascular diseases and diabetes. DNA methylation is a sensitive biomarker of aging-related processes and novel epigenetic-based "clocks" can be used to estimate accelerated biological aging that may underlie increased risk. Metals alter DNA methylation, yet little is known about their individual and combined impact on epigenetic age acceleration. Our objective was to investigate the associations of metals on several DNA methylation-based aging measures in the Strong Heart Study (SHS) cohort. METHODS: Blood DNA methylation data from 2,301 SHS participants was used to calculate age acceleration of epigenetic clocks (PhenoAge, GrimAge, DunedinPACE, Hannum, Horvath). Urinary metals [arsenic (As), cadmium (Cd), tungsten (W), zinc (Zn), selenium (Se), molybdenum (Mo)] were creatinine-adjusted and categorized into quartiles. We examined associations of individual metals through linear regression models and used Bayesian Kernel Machine Regression (BKMR) for the impact of the total metal mixture on epigenetic age acceleration. RESULTS: The mixture of nonessential metals (W, As, Cd) was associated with greater GrimAge acceleration and DunedinPACE, while the essential metal mixture (Se, Zn, Mo) was associated with lower epigenetic age acceleration. Cd was associated with increased epigenetic age acceleration across all clocks and BKMR analysis suggested nonlinear associations between Se and DunedinPACE, GrimAge, and PhenoAge acceleration. No interactions between individual metals were observed. The associations between Cd, Zn, and epigenetic age acceleration were greater in never smokers in comparison to current/former smokers. CONCLUSION: Nonessential metals were positively associated with greater epigenetic age acceleration, with strongest associations observed between Cd and DunedinPACE and GrimAge acceleration. In contrast, essential metals were associated with lower epigenetic aging. Examining the influence of metal mixtures on epigenetic age acceleration can provide insight into metals and aging-related diseases.


Asunto(s)
Envejecimiento , Metilación de ADN , Metales , Humanos , Envejecimiento/genética , Indio Americano o Nativo de Alaska , Arsénico , Teorema de Bayes , Cadmio , Epigénesis Genética , Metales/toxicidad , Selenio , Zinc
9.
Mitochondrion ; 69: 140-146, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36804466

RESUMEN

Mitochondrial DNA copy number (mtDNAcn) dynamics throughout childhood are poorly understood. We profiled mtDNAcn from birth through adolescence and evaluated how the prenatal environment influences mtDNAcn across childhood. Data were collected from children from New York City followed through 18 years. Using duplexed qRT-PCR, we quantified mtDNAcn relative to nuclear DNA in blood collected from the umbilical cord (n = 450), children aged 5-7 (n = 510), and adolescents aged 15-18 (n = 278). We examined mtDNAcn across childhood with linear mixed-effects models (LMM). Relative mtDNAcn was lowest at birth (mean ± SD: 0.67 ± 0.35) and increased in childhood (1.24 ± 0.50) then slightly declined in adolescence (1.13 ± 0.44). We observed no differences in mtDNAcn by sex or race/ethnicity. mtDNAcn was positively associated with prenatal environmental tobacco smoke exposure (0.077 [ 0.01, 0.14] change in relative mtDNAcn) but negatively associated with maternal completion of high school (-0.066 [-0.13, 0.00]), with the receipt of public assistance at birth (-0.074 [-0.14, -0.01]), and when mother born outside the U.S (-0.061 [-0.13, 0.003]). Infant birth outcomes were not associated with mtDNAcn. MtDNAcn levels were dynamic through childhood and associated with some prenatal factors, underscoring the need for the investigation of longitudinal mtDNAcn for human health research.


Asunto(s)
Negro o Afroamericano , ADN Mitocondrial , Embarazo , Lactante , Recién Nacido , Femenino , Humanos , Adolescente , Niño , ADN Mitocondrial/genética , Variaciones en el Número de Copia de ADN , República Dominicana , Mitocondrias/genética
10.
Environ Int ; 173: 107774, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36805808

RESUMEN

Exposure to low to moderate arsenic (As) levels has been associated with type 2 diabetes (T2D) and other chronic diseases in American Indian communities. Prenatal exposure to As may also increase the risk for T2D in adulthood, and maternal As has been associated with adult offspring metabolic health measurements. We hypothesized that T2D-related outcomes in adult offspring born to women exposed to low to moderate As can be evaluated utilizing a maternally-derived molecular biosignature of As exposure. Herein, we evaluated the association of maternal DNA methylation with incident T2D and insulin resistance (Homeostatic model assessment of insulin resistance [HOMA2-IR]) in adult offspring. For DNA methylation, we used 20 differentially methylated cytosine-guanine dinucleotides (CpG) previously associated with the sum of inorganic and methylated As species (ΣAs) in urine in the Strong Heart Study (SHS). Of these 20 CpGs, we found six CpGs nominally associated (p < 0.05) with HOMA2-IR in a fully adjusted model that included clinically relevant covariates and offspring adiposity measurements; a similar model that adjusted instead for maternal adiposity measurements found three CpGs nominally associated with HOMA2-IR, two of which overlapped the offspring adiposity model. After adjusting for multiple comparisons, cg03036214 remained associated with HOMA2-IR (q < 0.10) in the offspring adiposity model. The odds ratio of incident T2D increased with an increase in maternal DNA methylation at one HOMA2-IR associated CpG in the model adjusting for offspring adiposity, cg12116137, whereas adjusting for maternal adiposity had a minimal effect on the association. Our data suggests offspring adiposity, rather than maternal adiposity, potentially influences the effects of maternal DNAm signatures on offspring metabolic health parameters. Here, we have presented evidence supporting a role for epigenetic biosignatures of maternal As exposure as a potential biomarker for evaluating risk of T2D-related outcomes in offspring later in life.


Asunto(s)
Arsénico , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Embarazo , Adulto , Humanos , Femenino , Arsénico/toxicidad , Arsénico/orina , Metilación de ADN , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética , Hijos Adultos , Obesidad/metabolismo
11.
EClinicalMedicine ; 57: 101864, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36820096

RESUMEN

Background: Osteoporosis heavily affects postmenopausal women and is influenced by environmental exposures. Determining the impact of criteria air pollutants and their mixtures on bone mineral density (BMD) in postmenopausal women is an urgent priority. Methods: We conducted a prospective observational study using data from the ethnically diverse Women's Health Initiative Study (WHI) (enrollment, September 1994-December 1998; data analysis, January 2020 to August 2022). We used log-normal, ordinary kriging to estimate daily mean concentrations of PM10, NO, NO2, and SO2 at participants' geocoded addresses (1-, 3-, and 5-year averages before BMD assessments). We measured whole-body, total hip, femoral neck, and lumbar spine BMD at enrollment and follow-up (Y1, Y3, Y6) via dual-energy X-ray absorptiometry. We estimated associations using multivariable linear and linear mixed-effects models and mixture effects using Bayesian kernel machine regression (BKMR) models. Findings: In cross-sectional and longitudinal analyses, mean PM10, NO, NO2, and SO2 averaged over 1, 3, and 5 years before the visit were negatively associated with whole-body, total hip, femoral neck, and lumbar spine BMD. For example, lumbar spine BMD decreased 0.026 (95% CI: 0.016, 0.036) g/cm2/year per a 10% increase in 3-year mean NO2 concentration. BKMR suggested that nitrogen oxides exposure was inversely associated with whole-body and lumbar spine BMD. Interpretation: In this cohort study, higher levels of air pollutants were associated with bone damage, particularly on lumbar spine, among postmenopausal women. These findings highlight nitrogen oxides exposure as a leading contributor to bone loss in postmenopausal women, expanding previous findings of air pollution-related bone damage. Funding: US National Institutes of Health.

12.
Environ Res ; 216(Pt 4): 114830, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36400221

RESUMEN

BACKGROUND: Polybrominated diphenyl ethers (PBDEs) were used as flame retardants and from their end-use products they can be released to accumulate within indoor environments. This may result in exposures to pregnant women with potential adverse effects on the developing fetus. While studies have shown associations between prenatal PBDE exposure and poor birth outcomes, research has mainly focused on birth weight and gestational age and may miss important indicators of newborn size. METHODS: The sample included a cohort of Dominican and African American mother-child pairs from New York City recruited from 1998 to 2006. PBDE congeners (BDE-47, BDE-99, BDE-100, and BDE-153) were measured in cord serum at birth and dichotomized into low (<80th percentile) and high (>80th percentile) categories. Weight, length, head circumference, and gestational age were measured at birth and the ponderal index (birth weight/length x 100), size for gestational age, and population-based z-scores were calculated (n = 305). Separate regression analyses were conducted to estimate associations between PBDEs or PBDE sum (ng/g lipid) and birth outcomes. Quantile g-computation was performed to estimate the effect of total PBDE mixture. We also assessed effect modification by sex and ethnicity. RESULTS: Adjusting for relevant covariates, the high exposure category of BDE-153 was associated with lower birth weight z-score (-0.25, 95% CI: -0.5, 0.0) and longer gestation (0.43 weeks, 95% CI: 0.07, 0.79). The high exposure category of BDE-99 was associated with lower birth length z-score (-0.55, 95% CI: -0.98, -0.12). There was a negative association between the overall PBDE mixture and birth length z-score (-0.10, 95% CI: -0.21, 0.00) per 1 quintile increase in PBDEs. There was no effect modification by sex or ethnicity. CONCLUSIONS: These results suggest that prenatal exposures to BDE-153, BDE-99, and total PBDE mixture are associated with birth outcomes in a cohort of Dominican and African American newborns.


Asunto(s)
Retardadores de Llama , Efectos Tardíos de la Exposición Prenatal , Recién Nacido , Femenino , Humanos , Embarazo , Éteres Difenilos Halogenados/análisis , Peso al Nacer , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/epidemiología , Retardadores de Llama/toxicidad , Retardadores de Llama/análisis , Exposición Materna/efectos adversos
13.
J Am Heart Assoc ; 11(23): e026934, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36382957

RESUMEN

Background Lead is a cardiotoxic metal with a variety of adverse health effects. In the absence of data on bone lead exposure, epigenetic biomarkers can serve as indicators of cumulative lead exposure and body burden. Herein, we leveraged novel epigenetic biomarkers of lead exposure to investigate their association with cardiovascular disease (CVD) incidence and mortality. Methods and Results Blood DNA methylation was measured using the Illumina MethylationEPIC BeadChip among 2231 participants of the Strong Heart Study (SHS) at baseline (1989-1991). Epigenetic biomarkers of lead levels in blood, patella, and tibia were estimated using previously identified cytosine-guanine dinucleotide (CpG) sites. CVD incidence and mortality data were available through 2017. Median concentrations of lead epigenetic biomarkers were 13.8 µg/g, 21.3 µg/g, and 2.9 µg/dL in tibia, patella, and blood, respectively. In adjusted models, the hazard ratio (HR) (95% CI) of CVD mortality per doubling increase in lead epigenetic biomarkers were 1.42 (1.07-1.87) for tibia lead, 1.22 (0.93-1.60) for patella lead, and 1.57 (1.16-2.11) for blood lead. The corresponding HRs for incident CVD were 0.99 (0.83-1.19), 1.07 (0.89-1.29), and 1.06 (0.87-1.30). The association between the tibia lead epigenetic biomarker and CVD mortality was modified by sex (interaction P value: 0.014), with men at increased risk (HR, 1.42 [95% CI, 1.17-1.72]) compared with women (HR, 1.04 [95% CI, 0.89-1.22]). Conclusions Tibia and blood epigenetic biomarkers were associated with increased risk of CVD mortality, potentially reflecting the cardiovascular impact of cumulative and recent lead exposures. These findings support that epigenetic biomarkers of lead exposure may capture some of the disease risk associated with lead exposure.


Asunto(s)
Enfermedades Cardiovasculares , Humanos , Femenino , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/genética , Plomo/efectos adversos , Estudios Prospectivos , Epigenómica
14.
Environ Health ; 21(1): 82, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36076289

RESUMEN

BACKGROUND: Polybrominated diphenyl ethers (PBDEs) are flame-retardant compounds widely used in household products until phase out in 2004. PBDEs are endocrine disruptors and are suggested to influence signaling related to weight control. Prenatal exposures to PBDEs may alter childhood adiposity, yet few studies have examined these associations in human populations. METHODS: Data were collected from a birth cohort of Dominican and African American mother-child pairs from New York City recruited from 1998 to 2006. PBDE congeners BDE-47, - 99, - 100, and - 153 were measured in cord plasma (ng/µL) and dichotomized into low (< 80th percentile) and high (>80th percentile) exposure categories. Height and weight were collected at ages 5, 7, 9, 11, and an ancillary visit from 8 to 14 years (n = 289). Mixed-effects models with random intercepts for participant were used to assess associations between concentrations of individual PBDE congeners or the PBDE sum and child BMI z-scores (BMIz). To assess associations between PBDEs and the change in BMIz over time, models including interactions between PBDE categories and child age and (child age)2 were fit. Quantile g-computation was used to investigate associations between BMIz and the total PBDE mixture. Models were adjusted for baseline maternal covariates: ethnicity, age, education, parity, partnership status, and receipt of public assistance, and child covariates: child sex and cord cholesterol and triglycerides. RESULTS: The prevalence of children with obesity at age 5 was 24.2% and increased to 30% at age 11. Neither cord levels of individual PBDEs nor the total PBDE mixture were associated with overall BMIz in childhood. The changes in BMIz across childhood were not different between children with low or high PBDEs. Results were similar when adjusting for postnatal PBDE exposures. CONCLUSIONS: Prenatal PBDE exposures were not associated with child growth trajectories in a cohort of Dominican and African American children.


Asunto(s)
Retardadores de Llama , Efectos Tardíos de la Exposición Prenatal , Índice de Masa Corporal , Niño , Preescolar , Estudios de Cohortes , Femenino , Éteres Difenilos Halogenados , Humanos , Exposición Materna/efectos adversos , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/epidemiología
15.
Curr Environ Health Rep ; 9(4): 631-649, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35902457

RESUMEN

PURPOSE OF REVIEW: Mitochondria play various roles that are important for cell function and survival; therefore, significant mitochondrial dysfunction may have chronic consequences that extend beyond the cell. Mitochondria are already susceptible to damage, which may be exacerbated by environmental exposures. Therefore, the aim of this review is to summarize the recent literature (2012-2022) looking at the effects of six ubiquitous classes of compounds on mitochondrial dysfunction in human populations. RECENT FINDINGS: The literature suggests that there are a number of biomarkers that are commonly used to identify mitochondrial dysfunction, each with certain advantages and limitations. Classes of environmental toxicants such as polycyclic aromatic hydrocarbons, air pollutants, heavy metals, endocrine-disrupting compounds, pesticides, and nanomaterials can damage the mitochondria in varied ways, with changes in mtDNA copy number and measures of oxidative damage the most commonly measured in human populations. Other significant biomarkers include changes in mitochondrial membrane potential, calcium levels, and ATP levels. This review identifies the biomarkers that are commonly used to characterize mitochondrial dysfunction but suggests that emerging mitochondrial biomarkers, such as cell-free mitochondria and blood cardiolipin levels, may provide greater insight into the impacts of exposures on mitochondrial function. This review identifies that the mtDNA copy number and measures of oxidative damage are commonly used to characterize mitochondrial dysfunction, but suggests using novel approaches in addition to well-characterized ones to create standardized protocols. We identified a dearth of studies on mitochondrial dysfunction in human populations exposed to metals, endocrine-disrupting chemicals, pesticides, and nanoparticles as a gap in knowledge that needs attention.


Asunto(s)
Exposición a Riesgos Ambientales , Humanos , Exposición a Riesgos Ambientales/efectos adversos , Mitocondrias
16.
Environ Res ; 209: 112835, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35101400

RESUMEN

BACKGROUND: Phthalates are endocrine disrupting chemicals that may influence weight status; however, few studies have considered weight gain during pregnancy and subsequent long-term weight changes in women. OBJECTIVE: To determine associations of prenatal phthalate exposure with maternal weight during pregnancy and through up to seven years post-delivery. METHODS: We analyzed 15 urinary phthalate biomarker concentrations during the 2nd and 3rd trimesters among 874 pregnant women enrolled in the Programming Research in Obesity, Growth Environment and Social Stress Study in Mexico City. We examined three time-specific maternal weight outcomes: gestational weight gain (between 2nd and 3rd trimesters), short-term weight (between 3rd trimester and 12 months post-delivery), and long-term weight (between 18 months and 6-7 years post-delivery). We used Bayesian Kernel Machine Regression (BKMR) to estimate associations for the total phthalate mixture, as well as multivariable linear mixed models for individual phthalate biomarkers. RESULTS: As a mixture, 2nd trimester urinary phthalate biomarker concentrations were associated with somewhat lower gestational weight gain between the 2nd and 3rd trimesters (interquartile range, IQR, difference: -0.07 standard deviations, SD; 95% credible interval, CrI: -0.20, 0.06); multivariable regression and BKMR models indicated that this inverse association was primarily driven by mono-2-ethyl-5-carboxypentyl terephthalate (MECPTP). Prenatal (2nd and 3rd trimesters) urinary phthalate mixture concentrations were positively associated with maternal weight change through 12 months postpartum (IQR difference: 0.11 SD; 95% CrI: 0.00, 0.23); these associations persisted from 18 months to 6-7 years follow-up (IQR difference: 0.07 SD; 95% CrI: 0.04, 0.10). Postpartum weight changes were associated with mono-3-carboxypropyl phthalate (MCPP) and MECPTP. CONCLUSIONS: Prenatal phthalate exposure was inversely associated with gestational weight gain and positively associated with long-term changes in maternal weight. Further investigation is required to understand how phthalates may influence body composition and whether they contribute to the development of obesity and other cardiometabolic diseases in women.


Asunto(s)
Contaminantes Ambientales , Ganancia de Peso Gestacional , Ácidos Ftálicos , Teorema de Bayes , Contaminantes Ambientales/análisis , Contaminantes Ambientales/toxicidad , Femenino , Humanos , México , Ácidos Ftálicos/toxicidad , Embarazo
17.
Environ Int ; 158: 106986, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34991248

RESUMEN

BACKGROUND/AIMS: Early life exposures to marine contaminants can adversely impact child health but modes of action are unclear. Human milk contains extracellular vesicles (EVs) that can transport biologically relevant cargo from mother to infant, including microRNAs (miRNAs), and may partly mediate the effects of pollutants on child health. However, the role of marine pollutants on miRNA expression in milk EVs is unexplored. METHODS: We isolated EV RNA from 333 milk samples collected between 2 and 74 days postpartum from a Faroese birth cohort born 1997-2000 and sequenced 2083 miRNAs using a targeted library preparation method. We quantified five perfluoroalkyl substances (PFAS), pesticide metabolite p,p'-dichlorodiphenyldichloroethylene (DDE), and the sum of three major polychlorinated biphenyls (ΣPCBs) in maternal serum at 34 weeks of gestation and maternal hair total mercury (Hg) at birth. We used negative binomial regressions to estimate associations between individual pollutants and 418 reliably expressed EV-miRNAs adjusted for potential confounders. We performed sparse principal components (PCs) analysis to derive the first four components of the EV-miRNA data and examined associations between pollutants and PCs using Bayesian kernel machine regression (BKMR). RESULTS: We observed no associations between pollutants and individual EV-miRNA expression after controlling the false discovery rate at 0.1. However, BKMR suggested that Hg was positively associated with PC1 and negatively associated with PC3, while ΣPCBs was negatively associated with PC3, and two PFAS were associated with PC4. Exploration of PC loadings followed by pathway analyses suggested that miRNAs in PC1 (miR-200b-3p, miR-664a-3p, miR-6738-5p, miR-429, miR-1236-5p, miR-4464, and miR-30b-5p) may be related to Hg neurotoxicity, while remaining PCs require further research. CONCLUSIONS: Our findings suggest that groups of milk EV-miRNAs may better serve as environmental biomarkers than individual miRNAs. Future studies are needed to elucidate the role of milk EV-miRNAs in child health following prenatal exposures.


Asunto(s)
Contaminantes Ambientales , Vesículas Extracelulares , MicroARNs , Teorema de Bayes , Cohorte de Nacimiento , Niño , Contaminantes Ambientales/toxicidad , Femenino , Humanos , Recién Nacido , MicroARNs/genética , Leche Humana , Madres , Embarazo
18.
Epigenetics ; 17(1): 19-31, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33331245

RESUMEN

Altered maternal haemoglobin levels during pregnancy are associated with pre-clinical and clinical conditions affecting the fetus. Evidence from animal models suggests that these associations may be partially explained by differential DNA methylation in the newborn with possible long-term consequences. To test this in humans, we meta-analyzed the epigenome-wide associations of maternal haemoglobin levels during pregnancy with offspring DNA methylation in 3,967 newborn cord blood and 1,534 children and 1,962 adolescent whole-blood samples derived from 10 cohorts. DNA methylation was measured using Illumina Infinium Methylation 450K or MethylationEPIC arrays covering 450,000 and 850,000 methylation sites, respectively. There was no statistical support for the association of maternal haemoglobin levels with offspring DNA methylation either at individual methylation sites or clustered in regions. For most participants, maternal haemoglobin levels were within the normal range in the current study, whereas adverse perinatal outcomes often arise at the extremes. Thus, this study does not rule out the possibility that associations with offspring DNA methylation might be seen in studies with more extreme maternal haemoglobin levels.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Adolescente , Niño , Preescolar , Epigenoma , Epigenómica , Femenino , Sangre Fetal/metabolismo , Hemoglobinas/genética , Hemoglobinas/metabolismo , Humanos , Recién Nacido , Embarazo
19.
Environ Res ; 204(Pt B): 112111, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34563522

RESUMEN

BACKGROUND/AIM: Adiposity trajectories reflect dynamic process of growth and may predict later life health better than individual measures. Prenatal phthalate exposures may program later childhood adiposity, but findings from studies examining these associations are conflicting. We investigated associations between phthalate biomarker concentrations during pregnancy with child adiposity trajectories. METHODS: We followed 514 mother-child pairs from the Mexico City PROGRESS cohort from pregnancy through twelve years. We measured concentrations of nine phthalate biomarkers in 2nd and 3rd trimester maternal urine samples to create a pregnancy average using the geometric mean. We measured child BMI z-score, fat mass index (FMI), and waist-to-height ratio (WHtR) at three study visits between four and 12 years of age. We identified adiposity trajectories using multivariate latent class growth modeling, considering BMI z-score, FMI, and WHtR as joint indicators of latent adiposity. We estimated associations of phthalates biomarkers with class membership using multinomial logistic regression. We used quantile g-computation to estimate the potential effect of the total phthalate mixture and assessed effect modification by sex. RESULTS: We identified three trajectories of child adiposity, a "low-stable", a "low-high", and a "high-high" group. A doubling of the sum of di (2-ethylhexyl) phthalate metabolites (ΣDEHP), was associated with 1.53 (1.08, 2.19) greater odds of being in the "high-high" trajectory in comparison to the "low-stable" group, whereas a doubling in di-isononyl phthalate metabolites (ΣDiNP) was associated with 1.43 (1.02, 2.02) greater odds of being in the "low-high" trajectory and mono (carboxy-isononyl) phthalate (MCNP) was associated with 0.66 (0.45, 97) lower odds of being in the "low-high" trajectory. No sex-specific associations or mixture associations were observed. CONCLUSIONS: Prenatal concentrations of urinary DEHP metabolites, DiNP metabolites, and MCNP, a di-isodecyl phthalate metabolite, were associated with trajectories of child adiposity. The total phthalate mixture was not associated with early life child adiposity.


Asunto(s)
Contaminantes Ambientales , Ácidos Ftálicos , Efectos Tardíos de la Exposición Prenatal , Adiposidad , Exposición a Riesgos Ambientales , Contaminantes Ambientales/toxicidad , Femenino , Humanos , Ácidos Ftálicos/toxicidad , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente
20.
Environ Health Perspect ; 129(12): 127007, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34935432

RESUMEN

BACKGROUND: Phthalate exposure is ubiquitous and may affect biological pathways related to regulators of blood pressure. Given the profound changes in vasculature during pregnancy, pregnant women may be particularly susceptible to the potential effects of phthalates on blood pressure. OBJECTIVES: We examined associations of phthalate exposure during pregnancy with maternal blood pressure trajectories from mid-pregnancy through 72 months postpartum. METHODS: Women with singleton pregnancies delivering a live birth in Mexico City were enrolled during the second trimester (n=892). Spot urine samples from the second and third trimesters were analyzed for 15 phthalate metabolites. Blood pressure and covariate data were collected over nine visits through 72 months postpartum. We used linear, logistic, and linear mixed models; latent class growth models (LCGMs); and Bayesian kernel machine regression to estimate the relationship of urinary phthalate biomarkers with maternal blood pressure. RESULTS: As a joint mixture, phthalate biomarker concentrations during pregnancy were associated with higher blood pressure rise during mid-to-late gestation. With respect to individual biomarkers, second trimester concentrations of monobenzyl phthalate (MBzP) and di(2-ethylhexyl) phthalate biomarkers (ΣDEHP) were associated with higher third trimester blood pressure. Two trajectory classes were identified by LCGM, characterized by increasing blood pressure through 72 months postpartum ("increase-increase") or decreased blood pressure through 18 months postpartum with a gradual increase thereafter ("decrease-increase"). Increasing exposure to phthalate mixtures during pregnancy was associated with higher odds of being in the increase-increase class. Similar associations were observed for mono-2-ethyl-5-carboxypentyl terephthalate (MECPTP) and dibutyl phthalate (ΣDBP) biomarkers. When specific time periods were examined, we observed specific temporal relationships were observed for ΣDEHP, MECPTP, MBzP, and ΣDBP. DISCUSSION: In our cohort of pregnant women from Mexico City, exposure to phthalates and phthalate biomarkers was associated with higher blood pressure during late pregnancy, as well as with long-term changes in blood pressure trajectories. https://doi.org/10.1289/EHP8562.


Asunto(s)
Contaminantes Ambientales , Ácidos Ftálicos , Teorema de Bayes , Presión Sanguínea , Exposición a Riesgos Ambientales , Contaminantes Ambientales/toxicidad , Contaminantes Ambientales/orina , Femenino , Humanos , Exposición Materna , Ácidos Ftálicos/orina , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...