Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Carbohydr Res ; 540: 109138, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38703662

RESUMEN

High-mannose-type glycan structure of N-glycoproteins plays important roles in the proper folding of proteins in sorting glycoprotein secretion and degradation of misfolded proteins in the endoplasmic reticulum (ER). The Glc1Man9GlcNAc2 (G1M9)-type N-glycan is one of the most important signaling molecules in the ER. However, current chemical synthesis strategies are laborious, warranting more practical approaches for G1M9-glycopeptide development. Wang et al. reported the procedure to give G1M9-Asn-Fmoc through chemical modifications and purifications from 40 chicken eggs, but only 3.3 mg of G1M9-glycopeptide was obtained. Therefore, better methods are needed to obtain more than 10 mg of G1M9-glycopeptide. In this study, we report the preparation of G1M9-glycopeptide (13.2 mg) linking Asn-Gly-Thr triad as consensus sequence from 40 chicken eggs. In this procedure, λ-carrageenan treatment followed by papain treatment was used to separate the Fc region of IgY antibody that harbors high-mannose glycans. Moreover, cotton hydrophilic interaction liquid chromatography was adapted for easy purification. The resulting G1M9-Asn(Fmoc)-Gly-Thr was identified by nuclear magnetic resonance and mass spectroscopy. G1M9-Asn(Fmoc)-Gly, G1M9-Asn(Fmoc), and G1M9-OH were also detected by mass spectroscopy. Here, our developed G1M9-tripeptide might be useful for the elucidation of glycoprotein functions as well as the specific roles of the consensus sequence.

2.
Cell Stress Chaperones ; 29(2): 227-234, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38453000

RESUMEN

Dendritic cells, macrophages, neutrophils, and other antigen-presenting cells express various C-type lectin receptors that function to recognize the glycans associated with pathogens. The dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) binds various pathogens such as HIV glycoprotein 120, the Ebola glycoprotein, hemagglutinin, and the dengue virus glycoprotein in addition to the SARS-CoV-2 spike protein, and also triggers antigen-presenting cell endocytosis and immune escape from systemic infections. Many studies on the binding of SARS-CoV-2 spike protein with glycans have been published, but the underlying mechanism by which intracellular signaling occurs remains unclear. In this study, we report that the S1 spike protein of SARS-CoV-2 induces the phosphorylation of extracellular signal-regulated kinases (ERKs) in THP-1 cells, a DC-SIGN-expressing human monocytic leukemic cell line. On the other hand, the phosphorylation level of NF-κB remained unchanged under the same conditions. These data suggest that the major cell signaling pathway regulated by the S1 spike protein is the ERK pathway, which is superior to the NF-κB pathway in these DC-SIGN-expressing THP-1 cells and may contribute to immune hyperactivation in SARS-CoV-2 infections. Additionally, several glycans such as mannans, mannosylated bovine serum albumin, the serum amyloid beta protein, and intracellular adhesion molecule 3 suppressed ERK phosphorylation, suggesting that these molecules are target molecules for SARS-CoV-2 infection by suppressing immune hyperactivation that occurs in the ERK signaling pathway.


Asunto(s)
COVID-19 , Receptores de Superficie Celular , Glicoproteína de la Espiga del Coronavirus , Humanos , Glicoproteína de la Espiga del Coronavirus/metabolismo , FN-kappa B/metabolismo , SARS-CoV-2/metabolismo , Sistema de Señalización de MAP Quinasas , Células THP-1 , Péptidos beta-Amiloides , COVID-19/metabolismo , Moléculas de Adhesión Celular/metabolismo , Transducción de Señal , Lectinas Tipo C/metabolismo , Polisacáridos/metabolismo , Células Dendríticas/metabolismo
3.
J Org Chem ; 88(20): 14357-14367, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37792638

RESUMEN

High-mannose-type glycans play essential biological roles, e.g., immune response and glycoprotein quality control, and preparing a series of oligomannosyl branches of high-mannose-type glycans is critical for biological studies. However, obtaining sufficient amounts of the various oligomannosyl branches is challenging. In this study, we demonstrated a partial glycosylation strategy for the single-step synthesis of various biologically relevant oligomannosyl-branched structures. First, Manα1-6(Manα1-3)Man-type oligomannosyl branch was synthesized via double glycosylation from a 3,6-di-OH mannosyl acceptor and fluorinated mannosyl donor with perfect α-selectivity. Subsequent partial glycosylation by reducing the equivalent of the mannosyl donor enabled to obtain biologically relevant Manα1-2Manα1-6(Manα1-2Manα1-3)Man, Manα1-6(Manα1-2Manα1-3)Man, Manα1-2Manα1-6(Manα1-3)Man, and Manα1-6(Manα1-3)Man in one-pot. Each oligomannosyl branch could be easily purified by liquid chromatography. The resulting structural isomers were identified by 2D-HMBC NMR. A systematic lectin affinity assay using the prepared oligomannosyl branches showed different specificities for the Galanthus nivalis lectin between structural isomers of the oligomannosyl branches with the same number of mannose residues..


Asunto(s)
Lectinas , Manosa , Humanos , Glicosilación , Manosa/química , Polisacáridos/química , Glicoproteínas/química
4.
Biology (Basel) ; 11(2)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35205066

RESUMEN

Glycoprotein folding plays a critical role in sorting glycoprotein secretion and degradation in the endoplasmic reticulum (ER). Furthermore, relationships between glycoprotein folding and several diseases, such as type 2 diabetes and various neurodegenerative disorders, are indicated. Patients' cells with type 2 diabetes, and various neurodegenerative disorders induce ER stress, against which the cells utilize the unfolded protein response for protection. However, in some cases, chronic and/or massive ER stress causes critical damage to cells, leading to the onset of ER stress-related diseases, which are categorized into misfolding diseases. Accumulation of misfolded proteins may be a cause of ER stress, in this respect, perturbation of oligomannose-type glycan processing in the ER may occur. A great number of studies indicate the relationships between ER stress and misfolding diseases, while little evidence has been reported on the connection between oligomannose-type glycan processing and misfolding diseases. In this review, we summarize alteration of oligomannose-type glycan processing in several ER stress-related diseases, especially misfolding diseases and show the possibility of these alteration of oligomannose-type glycan processing as indicators of diseases.

5.
Biotechnol Bioeng ; 118(10): 3760-3769, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34110012

RESUMEN

To generate three-dimensional tissue in vitro, promoting vasculogenesis in cell aggregates is an important factor. Here, we found that ultrasound promoted vasculogenesis of human umbilical vein endothelial cells (HUVECs). Promotion of HUVEC network formation and lumen formation were observed using our method. In addition to morphological evaluations, protein expression was quantified by western blot assays. As a result, expression of proteins related to vasculogenesis and the response to mechanical stress on cells was enhanced by exposure to ultrasound. Although several previous studies have shown that ultrasound may promote vasculogenesis, the effect of ultrasound was unclear because of unregulated ultrasound, the complex culture environment, or two-dimensional-cultured HUVECs that cannot form a lumen structure. In this study, regulated ultrasound was propagated on three-dimensional-monocultured HUVECs, which clarified the effect of ultrasound on vasculogenesis. We believe this finding may be an innovation in the tissue engineering field.


Asunto(s)
Técnicas de Cultivo de Célula , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Neovascularización Fisiológica , Ondas Ultrasónicas , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos
6.
Org Biomol Chem ; 19(18): 4137-4145, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33876795

RESUMEN

A tri-antennary Man9GlcNAc2 glycan on the surface of endoplasmic reticulum (ER) glycoproteins functions as a glycoprotein secretion or degradation signal after regioselective cleavage of the terminal α-1,2-mannose residue of each branch. Four α-1,2-mannosidases-ER mannosidase I, ER degradation-enhancing α-mannosidase-like protein 1 (EDEM1), EDEM2, and EDEM3-are involved in the production of these signal glycans. Although selective production of signal glycans is important in determining the fate of glycoproteins, the branch-discrimination abilities of the α-1,2-mannosidases are not well understood. A structural feature of the Man9GlcNAc2 glycan is that all terminal glycosidic linkages of the three branches are of the α-1,2 type, while the adjacent inner glycosidic linkages are different. In this study, we examined whether the α-1,2-mannosidases showed branch specificity by discriminating between different inner glycosides. Four trisaccharides with different glycosidic linkages [Manα1-2Manα1-2Man (natural A-branch), Manα1-2Manα1-3Man (natural B-branch), Manα1-2Manα1-6Man (natural C-branch), and Manα1-2Manα1-4Man (unnatural D-branch)] were synthesized and used to evaluate the hypothesis. When synthesizing these oligosaccharides, highly stereoselective glycosylation was achieved with a high yield in each case by adding a weak base or tuning the polarity of the mixed solvent. Enzymatic hydrolysis of the synthetic trisaccharides by a mouse liver ER fraction containing the target enzymes showed that the ER α-1,2-mannosidases had clear specificity for the trisaccharides in the order of A-branch > B-branch > C-branch ≈ D-branch. Various competitive experiments have revealed for the first time that α-1,2-mannosidase with inner glycoside specificity is present in the ER. Our findings suggest that exo-acting ER α-1,2-mannosidases can discriminate between endo-glycosidic linkages.


Asunto(s)
Trisacáridos
7.
Carbohydr Res ; 502: 108273, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33713911

RESUMEN

N-glycans are attached to newly synthesised polypeptides and are involved in the folding, secretion, and degradation of N-linked glycoproteins. In particular, the calnexin/calreticulin cycle, which is the central mechanism of the entry and release of N-linked glycoproteins depending on the folding sates, has been well studied. In addition to biological studies on the calnexin/calreticulin cycle, several studies have revealed complementary roles of in vitro chemistry-based research in the structure-based understanding of the cycle. In this mini-review, we summarise chemistry-based results and highlight their importance for further understanding of the cycle.


Asunto(s)
Calnexina/metabolismo , Calreticulina/metabolismo , Glicoproteínas/metabolismo , Polisacáridos/metabolismo , Calnexina/química , Calreticulina/química , Conformación de Carbohidratos , Glicoproteínas/química , Polisacáridos/química
8.
Curr Opin Struct Biol ; 68: 41-47, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33296772

RESUMEN

About half of all newly synthesized proteins have N-linked glycans. These glycans play pivotal roles in controlling the folding, sorting, and degradation of glycoproteins via several glycan-related proteins. The glycan-mediated protein quality control system is important for cellular homeostasis. In this review, we summarize recent advances in our understanding of the system and discuss structural insights from chemical and biological perspectives. In particular, we focus on the mechanisms by which these mediators respond to several folding states of glycoproteins.


Asunto(s)
Polisacáridos , Pliegue de Proteína , Glicoproteínas/metabolismo , Transporte de Proteínas
9.
Eng Life Sci ; 20(7): 232-238, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32647502

RESUMEN

Cancer research is increasingly focused on discovering strategies to induce cancer cell apoptosis without affecting surrounding normal cells. One potential biocompatible method is mechanical vibration, which has been developed as part of the emerging field of mechanomedicine. Previous studies of mechanical vibration have employed high-frequency vibration, which damages healthy cells. In this study, we examined the effects of brief (1 h) low-frequency (20 Hz) mechanical vibration on glucose consumption and survival (apoptosis, necrosis, HMGB1 release) of the human epidermoid carcinoma cell line A431. We found that apoptosis, but not necrosis, was significantly increased at 48 h after mechanical vibration compared with cells maintained in static culture. In keeping with this, extracellular release of HMGB1, a necrosis marker, was lower in cultures of A431 cells subjected to mechanical vibration compared with control cells. Glucose consumption was increased in the first 24 h after mechanical vibration but returned to control levels before the onset of apoptosis. Although the precise intracellular mechanisms by which low-frequency mechanical vibration triggers apoptosis of A431 cells is unknown, these results suggest a possible role for metabolic pathways. Mechanical vibration may thus represent a novel application of mechanomedicine to cancer therapy.

10.
ACS Omega ; 5(13): 7399-7405, 2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32280881

RESUMEN

We demonstrate the preferential orders of molecular chaperones glucose-regulated protein 94 (GRP94), binding immunoglobulin protein (BiP), and calreticulin (CRT) in an endoplasmic reticulum (ER) fraction from rat liver using columns conjugated with denatured myoglobin, RNase A, or ß-lactoglobulin as client proteins in the presence or absence of ATP. The results showed that BiP, CRT, and GRP94 preferentially contributed myoglobin, RNase A, and ß-lactoglobulin, respectively, in the presence of ATP. In the absence of ATP, GRP94 and CRT preferentially recognized misfolded myoglobin (α-helix-rich protein), whereas BiP preferentially recognized misfolded RNase A (α-helix/ß-sheet mixed protein) and ß-lactoglobulin (ß-sheet-rich protein). The preferential order of ER chaperones may be dynamically regulated by ER conditions and the higher-order structure of client proteins.

11.
FEBS Lett ; 594(11): 1759-1769, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32232844

RESUMEN

Deglucosylation and reglucosylation of glycoproteins by glucosidase II and uridine diphosphate-glucose: glycoprotein glucosyltransferase 1 (UGGT1), respectively, are important steps in glycoprotein quality control. Misfolded glycoprotein accumulation is associated with endoplasmic reticulum stress and can lead to protein misfolding diseases such as metabolic syndrome. Here, we analyzed the expression and activities of glucosidase II and UGGT1 in rat models of obesity and obese type 2 diabetes, and phenotypes associated with moderate and severe metabolic syndrome, respectively. In obesity, the mRNA and protein levels of glucosidase II and UGGT1 are decreased and their activities are reduced. In obese type 2 diabetes, the mRNA and protein levels of these enzymes are increased, and glucosidase II activity is slightly recovered, although UGGT1 activity is reduced. Our findings suggest that metabolic syndrome affects deglucosylation/reglucosylation enzymes according to disease severity.


Asunto(s)
Glicoproteínas/química , Glicoproteínas/metabolismo , Síndrome Metabólico/metabolismo , Pliegue de Proteína , Animales , Diabetes Mellitus Tipo 2 , Modelos Animales de Enfermedad , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Glicosilación , Hígado/enzimología , Masculino , Síndrome Metabólico/enzimología , Obesidad , Ratas , Ratas Zucker , alfa-Glucosidasas/genética , alfa-Glucosidasas/metabolismo
12.
Commun Biol ; 2: 393, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31701022

RESUMEN

Cell detachment is essential in culturing adherent cells. Trypsinization is the most popular detachment technique, even though it reduces viability due to the damage to the membrane and extracellular matrix. Avoiding such damage would improve cell culture efficiency. Here we propose an enzyme-free cell detachment method that employs the acoustic pressure, sloshing in serum-free medium from intermittent traveling wave. This method detaches 96.2% of the cells, and increases its transfer yield to 130% of conventional methods for 48 h, compared to the number of cells detached by trypsinization. We show the elimination of trypsinization reduces cell damage, improving the survival of the detached cells. Acoustic pressure applied to the cells and media sloshing from the intermittent traveling wave were identified as the most important factors leading to cell detachment. This proposed method will improve biopharmaceutical production by expediting the amplification of tissue-cultured cells through a more efficient transfer process.


Asunto(s)
Separación Celular/métodos , Animales , Células CHO , Adhesión Celular , Proliferación Celular , Separación Celular/instrumentación , Cricetulus , Medio de Cultivo Libre de Suero , Daño del ADN , Diseño de Equipo , Proteínas de la Membrana/metabolismo , Microscopía Electrónica de Rastreo , Tripsina , Ondas Ultrasónicas
13.
Chem Asian J ; 14(11): 1965-1969, 2019 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-30884161

RESUMEN

Golgi endo-α-mannosidase (G-EM) catalyzes an alternative deglucosylation process for N-glycans and plays important roles in the post-endoplasmic reticulum (ER) quality control pathway. To understand the post-ER quality control mechanism, we synthesized a tetrasaccharide probe for the detection of the hydrolytic activity of G-EM based on a fluorescence quenching assay. The probe was labeled with an N-methylanthraniloyl group as a reporter dye at the non-reducing end and a 2,4-dinitrophenyl group as a quencher at the reducing end. This probe is hydrolyzed to disaccharide derivatives by G-EM, resulting in increased fluorescence intensity. Thus, the fluorescence signal is directly proportional to the amount of disaccharide derivative present, allowing the G-EM activity to be evaluated easily and quantitatively.


Asunto(s)
Aparato de Golgi/enzimología , alfa-Manosidasa/metabolismo , Retículo Endoplásmico/metabolismo , Pruebas de Enzimas/métodos , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/química , Hidrólisis , Oligosacáridos/química , Oligosacáridos/metabolismo , Especificidad por Sustrato
14.
Ultrasound Med Biol ; 45(5): 1306-1315, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30799124

RESUMEN

Cellular aggregates that mimic cell-cell interactions in vitro are essential for biological research. This study introduces a method to form large scaffold-free 3-D aggregates in a clinically ubiquitous cell culture dish using kilohertz-order ultrasound standing wave trapping (USWT). We fabricated an aggregate formation system in which a 60-mm dish was set above a Langevin transducer via water. The transducer was excited at 110.8 kHz, and then C2C12 myoblasts were injected into the dish and trapped at the node position of the standing wave. The diameter and thickness of the formed aggregate were 8 and 2.7 mm, respectively, which are larger than those of aggregates formed previously by USWT. Moreover, we confirmed that >94% of cells constituting the aggregates survived 9 h, and the protein expression of cells was not altered significantly. This method can be applied to form aggregates with high functionality, which contributes to the development of biological research methodology.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Mioblastos/fisiología , Ingeniería de Tejidos/métodos , Ondas Ultrasónicas , Animales , Agregación Celular/fisiología , Ratones , Modelos Animales
15.
IEEE Trans Biomed Eng ; 66(1): 111-118, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29993416

RESUMEN

Cell patterning methods have been previously reported for cell culture. However, these methods use inclusions or devices that are not used in general cell culture and that might affect cell functionality. Here, we report a cell patterning method that can be conducted on a general cell culture dish without any inclusions by employing a resonance vibration of a disk-shaped ultrasonic transducer located under the dish. A resonance vibration with a single nodal circle patterned C2C12 myoblasts into a circular shape on the dish with 10-min exposure of the vibration with maximum peak-peak amplitude of 10 µm[Formula: see text]. Furthermore, the relationship between the amplitude distribution of the transducer and the cell density in the patterned sample could be expressed as a linear function, and there was a clear threshold of amplitude for cell adhesion. To evaluate the cell function of the patterned cells, we conducted proliferation and protein assays at 120-h culture after patterning. Our results showed that the cell proliferation rate did not decrease and the expression of cellular proteins was unchanged. Thus, we conclude, this method can successfully pattern cells in the clinically ubiquitous culture dish, while maintaining cell functionality.


Asunto(s)
Bioingeniería , Técnicas de Cultivo de Célula/instrumentación , Ultrasonido/instrumentación , Animales , Bioingeniería/instrumentación , Bioingeniería/métodos , Adhesión Celular/fisiología , Técnicas de Cultivo de Célula/métodos , Línea Celular , Diseño de Equipo , Ratones , Presión , Transductores
16.
Protein Pept Lett ; 24(8): 723-728, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28820060

RESUMEN

BACKGROUND: Peptide: N-glycanase is a deglycosylation enzyme releasing N-glycan from glycoproteins. Although glycan specificity analysis of this enzyme has been reported, recognition requirements for the peptide sequence have not been precisely elucidated. OBJECTIVE: In this study, we carried out peptide specificity analysis of several peptide:N-glycanases. METHODS: Using synthetic chitobiose-pentapeptide substrates having a systematic series of amino acid sequences composed of hydrophobic leucine and hydrophilic serine, we examined the peptide specificities of peptide: N-glycanases comprising yeast cytoplasmic PNGase, bacterial PNGase F, and plant PNGase A by ultra-performance liquid chromatography combined with electrospray ionization mass spectrometry. RESULTS: We found that each of the PNGases had higher activity for the more hydrophobic (leucinerich) chitobiose-pentapeptides, although the sensitivities of the PNGases for hydrophobicity varied. Cytoplasmic PNGase showed broad specificity. In contrast, PNGase A showed moderate specificity. PNGase F showed the highest specificity. CONCLUSION: PNGases from different origins had similar but significantly independent peptide specificities.


Asunto(s)
Proteínas Bacterianas/química , Disacáridos/química , Oligopéptidos/química , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/química , Proteínas de Plantas/química , Proteínas de Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clonación Molecular , Disacáridos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Flavobacteriaceae/química , Flavobacteriaceae/enzimología , Expresión Génica , Glicosilación , Interacciones Hidrofóbicas e Hidrofílicas , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Leucina/química , Leucina/metabolismo , Oligopéptidos/metabolismo , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/genética , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plásmidos/química , Plásmidos/metabolismo , Prunus dulcis/química , Prunus dulcis/enzimología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina/química , Serina/metabolismo , Especificidad por Sustrato
17.
Chembiochem ; 18(11): 1027-1035, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28371030

RESUMEN

Within the endoplasmic reticulum, immature glycoproteins are sorted into secretion and degradation pathways through the sequential trimming of mannose residues from Man9 GlcNAc2 to Man5 GlcNAc2 by the combined actions of assorted α-1,2-mannosidases. It has been speculated that specific glycoforms encode signals for secretion and degradation. However, it is unclear whether the specific signal glycoforms are produced by random mannosidase action or are produced regioselectively in a sequenced manner by specific α-1,2-mannosidases. Here, we report the identification of a set of selective mannosidase inhibitors and development of conditions for their use that enable production of distinct pools of Man8 GlcNAc2 isomers from a structurally defined synthetic Man9 GlcNAc2 substrate in an endoplasmic reticulum fraction. Glycan processing analysis with these inhibitors provides the first biochemical evidence for selective production of the signal glycoforms contributing to traffic control in glycoprotein quality control.


Asunto(s)
Retículo Endoplásmico/metabolismo , Glicoproteínas/metabolismo , Manosidasas/antagonistas & inhibidores , Animales , Inhibidores Enzimáticos , Humanos , Manosa/metabolismo , Manosidasas/metabolismo , Ratones , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA