Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36945596

RESUMEN

The Ser/Thr protein phosphatase 2A (PP2A) is a highly conserved collection of heterotrimeric holoenzymes responsible for the dephosphorylation of many regulated phosphoproteins. Substrate recognition and the integration of regulatory cues are mediated by B regulatory subunits that are complexed to the catalytic subunit (C) by a scaffold protein (A). PP2A/B55 substrate recruitment was thought to be mediated by charge-charge interactions between the surface of B55α and its substrates. Challenging this view, we recently discovered a conserved SLiM [ RK ]- V -x-x-[ VI ]- R in a range of proteins, including substrates such as the retinoblastoma-related protein p107 and TAU (Fowle et al. eLife 2021;10:e63181). Here we report the identification of this SLiM in FAM122A, an inhibitor of B55α/PP2A. This conserved SLiM is necessary for FAM122A binding to B55α in vitro and in cells. Computational structure prediction with AlphaFold2 predicts an interaction consistent with the mutational and biochemical data and supports a mechanism whereby FAM122A uses the 'SLiM' in the form of a short α-helix to dock to the B55α top groove. In this model, FAM122A spatially constrains substrate access by occluding the catalytic subunit with a second α-helix immediately adjacent to helix 1. Consistently, FAM122A functions as a competitive inhibitor as it prevents binding of substrates in in vitro competition assays and the dephosphorylation of CDK substrates by B55α/PP2A in cell lysates. Ablation of FAM122A in human cell lines reduces the rate of proliferation, progression through cell cycle transitions and abrogates G1/S and intra-S phase cell cycle checkpoints. FAM122A-KO in HEK293 cells results in attenuation of CHK1 and CHK2 activation in response to replication stress. Overall, these data strongly suggest that FAM122A is a 'SLiM'-dependent, substrate-competitive inhibitor of B55α/PP2A that suppresses multiple functions of B55α in the DNA damage response and in timely progression through the cell cycle interphase.

2.
Elife ; 102021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34661528

RESUMEN

Protein phosphorylation is a reversible post-translation modification essential in cell signaling. This study addresses a long-standing question as to how the most abundant serine/threonine protein phosphatase 2 (PP2A) holoenzyme, PP2A/B55α, specifically recognizes substrates and presents them to the enzyme active site. Here, we show how the PP2A regulatory subunit B55α recruits p107, a pRB-related tumor suppressor and B55α substrate. Using molecular and cellular approaches, we identified a conserved region 1 (R1, residues 615-626) encompassing the strongest p107 binding site. This enabled us to identify an 'HxRVxxV619-625' short linear motif (SLiM) in p107 as necessary for B55α binding and dephosphorylation of the proximal pSer-615 in vitro and in cells. Numerous B55α/PP2A substrates, including TAU, contain a related SLiM C-terminal from a proximal phosphosite, 'p[ST]-P-x(4,10)-[RK]-V-x-x-[VI]-R.' Mutation of conserved SLiM residues in TAU dramatically inhibits dephosphorylation by PP2A/B55α, validating its generality. A data-guided computational model details the interaction of residues from the conserved p107 SLiM, the B55α groove, and phosphosite presentation. Altogether, these data provide key insights into PP2A/B55α's mechanisms of substrate recruitment and active site engagement, and also facilitate identification and validation of new substrates, a key step towards understanding PP2A/B55α's role in multiple cellular processes.


Asunto(s)
Proteína Fosfatasa 2/genética , Proteína p107 Similar a la del Retinoblastoma/genética , Células HEK293 , Holoenzimas/metabolismo , Humanos , Fosforilación , Proteína Fosfatasa 2/metabolismo , Proteína p107 Similar a la del Retinoblastoma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA