RESUMEN
Although hundreds of knockout mice show infertility as a major phenotype, the causative genic mutations of male infertility in humans remain rather limited. Here, we report the identification of a missense mutation (D136G) in the X-linked TAF7L gene as a potential cause of oligozoospermia in men. The human aspartate (D136) is evolutionally conserved across species, and its change to glycine (G) is predicted to be detrimental. Genetic complementation experiments in budding yeast demonstrate that the conserved aspartate or its analogous asparagine (N) residue in yeast TAF7 is essential for cell viability and thus its mutation to G is lethal. Although the corresponding D144G substitution in the mouse Taf7l gene does not affect male fertility, RNA-seq analyses reveal alterations in transcriptomic profiles in the Taf7l (D144G) mutant testes. These results support TAF7L mutation as a risk factor for oligozoospermia in humans.
Asunto(s)
Infertilidad Masculina , Oligospermia , Factores Asociados con la Proteína de Unión a TATA , Factor de Transcripción TFIID , Animales , Ácido Aspártico , Genes Ligados a X/genética , Humanos , Infertilidad Masculina/genética , Masculino , Ratones , Mutación , Mutación Missense , Oligospermia/genética , Factores Asociados con la Proteína de Unión a TATA/genética , Factor de Transcripción TFIID/genéticaRESUMEN
Yeast Ssd1 is an RNA-binding protein that shuttles between the nucleus and cytoplasm. Ssd1 interacts with its target mRNAs initially during transcription by binding through its N-terminal prion-like domain (PLD) to the C-terminal domain of RNA polymerase II. Ssd1 subsequently targets mRNAs acquired in the nucleus either to daughter cells for translation or to stress granules (SGs) and P-bodies (PBs) for mRNA storage or decay. Here we show that PB components assist in the nuclear export of Ssd1and subsequent targeting of Ssd1 to PB sites in the cytoplasm. In the absence of import into the nucleus, Ssd1 fails to associate with PBs in the cytoplasm but rather is targeted to cytosolic insoluble protein deposits (IPODs). The association of Ssd1 either with IPOD sites or with PB/SG requires the PLD, whose activity is differentially regulated by the Ndr/LATS family kinase, Cbk1: phosphorylation suppresses PB/SG association but enhances IPOD formation. This regulation likely accrues from a phosphorylation-sensitive nuclear localization sequence located in the PLD. The results presented here may inform our understanding of aggregate formation by RBP in certain neurological diseases.
Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fosforilación , Agregado de Proteínas/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genéticaRESUMEN
Saccharomyces cerevisiae Cbk1 kinase is a LATS/NDR tumor suppressor orthologue and component of the Regulation of Ace2 and Morphogenesis signaling network. Cbk1 was previously implicated in regulating polarized morphogenesis, gene expression, and cell integrity. Here we establish that Cbk1 is critical for heat shock and cell wall stress signaling via Bck2, a protein associated with the Pkc1-Mpk1 cell integrity pathway. We demonstrate that cbk1 and bck2 loss-of-function mutations prevent Mpk1 kinase activation and Mpk1-dependent gene expression but do not disrupt Mpk1 Thr-190/Tyr-192 phosphorylation. Bck2 overexpression partially restores Mpk1-dependent Rlm1 transcription factor activity in cbk1 mutants, suggesting that Bck2 functions downstream of Cbk1. We demonstrate that Bck2 precisely colocalizes with the mitogen-activated protein kinase (MAPK) phosphatase Sdp1. During heat shock, Bck2 and Sdp1 transiently redistribute from nuclei and the cytosol to mitochondria and other cytoplasmic puncta before returning to their pre-stressed localization patterns. Significantly, Cbk1 inhibition delays the return of Bck2 and Sdp1 to their pre-stressed localization patterns and delays Mpk1 Thr-190/Tyr-192 dephosphorylation upon heat shock adaptation. We conclude that Cbk1 and Bck2 are required for Mpk1 activation during heat shock and cell wall stress and for Mpk1 dephosphorylation during heat shock adaptation. These data provide the first evidence that Cbk1 kinase regulates MAPK-dependent stress signaling and provide mechanistic insight into Sdp1 phosphatase regulation.
Asunto(s)
Respuesta al Choque Térmico/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Quinasas Activadas por Mitógenos/biosíntesis , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fosfatasas de Especificidad Dual/genética , Fosfatasas de Especificidad Dual/metabolismo , Activación Enzimática/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación Fúngica de la Expresión Génica/fisiología , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Fosforilación/fisiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Saccharomyces cerevisiae/genéticaRESUMEN
Mechanisms that control mRNA metabolism are critical for cell function, development and stress response. The Saccharomyces cerevisiae mRNA-binding protein Ssd1 has been implicated in mRNA processing, ageing, stress response and maintenance of cell integrity. Ssd1 is a substrate of the LATS/NDR tumour suppressor orthologue Cbk1 kinase. Previous data indicate that Ssd1 localizes to the cytoplasm; however, biochemical interactions suggest that Ssd1 at least transiently localizes to the nucleus. We therefore explored whether nuclear localization is important for Ssd1 cytoplasmic functions. We identified a functional NLS in the N-terminal domain of Ssd1. An Ssd1-derived NLS-GFP fusion protein and several C-terminally truncated Ssd1 proteins, which presumably lack nuclear export sequences, accumulate in the nucleus. Alanine substitution of the Ssd1 NLS prevents Ssd1 nuclear entry, mRNA binding and disrupts Srl1 mRNA localization. Moreover, Ssd1-NLS mutations abolish Ssd1 toxicity in the absence of Cbk1 phosphorylation and cause Ssd1 to localize prominently to cytoplasmic puncta. These data indicate that nuclear shuttling is critical for Ssd1 mRNA binding and Ssd1-mRNA localization in the cytoplasm. Collectively these data support the model that Ssd1 functions analogously to hnRNPs, which bind mRNA co-transcriptionally, are exported to the cytoplasm and target mRNAs to sites of localized translation and P-bodies.
Asunto(s)
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Regulación Fúngica de la Expresión Génica , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transporte Activo de Núcleo Celular , Fusión Artificial Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Modelos Biológicos , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Señales de Localización Nuclear , Proteínas de Saccharomyces cerevisiae/genética , Eliminación de SecuenciaRESUMEN
The mRNA-binding protein Ssd1 is a substrate for the Saccharomyces cerevisiae LATS/NDR orthologue Cbk1, which controls polarized growth, cell separation, and cell integrity. We discovered that most Ssd1 localizes diffusely within the cytoplasm, but some transiently accumulates at sites of polarized growth. Cbk1 inhibition and cellular stress cause Ssd1 to redistribute to mRNA processing bodies (P-bodies) and stress granules, which are known to repress translation. Ssd1 recruitment to P-bodies is independent of mRNA binding and is promoted by the removal of Cbk1 phosphorylation sites. SSD1 deletion severely impairs the asymmetric localization of the Ssd1-associated mRNA, SRL1. Expression of phosphomimetic Ssd1 promotes polarized localization of SRL1 mRNA, whereas phosphorylation-deficient Ssd1 causes constitutive localization of SRL1 mRNA to P-bodies and causes cellular lysis. These data support the model that Cbk1-mediated phosphorylation of Ssd1 promotes the cortical localization of Ssd1-mRNA complexes, whereas Cbk1 inhibition, cellular stress, and Ssd1 dephosphorylation promote Ssd1-mRNA interactions with P-bodies and stress granules, leading to translational repression.
Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Sitios de Unión , Aumento de la Célula , Polaridad Celular , Citoplasma/metabolismo , Eliminación de Gen , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/análisis , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMEN
The early endocytic patch protein Sla2 is important for morphogenesis and growth rates in Saccharomyces cerevisiae and Candida albicans, but the mechanism that connects these processes is not clear. Here we report that growth defects in cells lacking CaSLA2 or ScSLA2 are associated with a cell cycle delay that is influenced by Swe1, a morphogenesis checkpoint kinase. To establish how Swe1 monitors Sla2 function, we compared actin organization and cell cycle dynamics in strains lacking other components of early endocytic patches (Sla1 and Abp1) with those in strains lacking Sla2. Only sla2 strains had defects in actin cables, a known trigger of the morphogenesis checkpoint, yet all three strains exhibited Swe1-dependent phenotypes. Thus, Swe1 appears to monitor actin patch in addition to actin cable function. Furthermore, Swe1 contributed to virulence in a mouse model of disseminated candidiasis, implying a role for the morphogenesis checkpoint during the pathogenesis of C. albicans infections.
Asunto(s)
Candida albicans/citología , Candida albicans/genética , Proteínas de Ciclo Celular/genética , Proteínas del Citoesqueleto/genética , Proteínas Fúngicas/genética , Genes Fúngicos , Mutación , Proteínas Tirosina Quinasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Actinas/metabolismo , Animales , Secuencia de Bases , Candida albicans/patogenicidad , Candida albicans/fisiología , Candidiasis/etiología , Ciclo Celular/genética , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/fisiología , Proteínas del Citoesqueleto/fisiología , Cartilla de ADN/genética , ADN de Hongos/genética , Modelos Animales de Enfermedad , Endocitosis , Proteínas Fúngicas/fisiología , Eliminación de Gen , Masculino , Ratones , Ratones Endogámicos ICR , Morfogénesis/genética , Plásmidos/genética , Proteínas Tirosina Quinasas/fisiología , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Virulencia/genética , Virulencia/fisiologíaRESUMEN
Saccharomyces cerevisiae Cbk1 is a LATS/Ndr protein kinase and a downstream component of the regulation of Ace2 and morphogenesis (RAM) signaling network. Cbk1 and the RAM network are required for cellular morphogenesis, cell separation, and maintenance of cell integrity. Here, we examine the phenotypes of conditional cbk1 mutants to determine the essential function of Cbk1. Cbk1 inhibition severely disrupts growth and protein secretion, and triggers the Swe1-dependent morphogenesis checkpoint. Cbk1 inhibition also delays the polarity establishment of the exocytosis regulators Rab-GTPase Sec4 and its exchange factor Sec2, but it does not interfere with actin polarity establishment. Cbk1 binds to and phosphorylates Sec2, suggesting that it regulates Sec4-dependent exocytosis. Intriguingly, Cbk1 inhibition causes a >30% decrease in post-Golgi vesicle accumulation in late secretion mutants, indicating that Cbk1 also functions upstream of Sec2-Sec4, perhaps at the level of the Golgi. In agreement, conditional cbk1 mutants mislocalize the cis-Golgi mannosyltransferase Och1, are hypersensitive to the aminoglycoside hygromycin B, and exhibit diminished invertase and Sim1 glycosylation. Significantly, the conditional lethality and hygromycin B sensitivity of cbk1 mutants are suppressed by moderate overexpression of several Golgi mannosyltransferases. These data suggest that an important function for Cbk1 and the RAM signaling network is to regulate growth and secretion via Golgi and Sec2/Sec4-dependent processes.
Asunto(s)
Proteínas Fúngicas/metabolismo , Aparato de Golgi/metabolismo , Saccharomyces cerevisiae , Antihelmínticos/metabolismo , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Polaridad Celular , Citoesqueleto/metabolismo , Colorantes Fluorescentes/metabolismo , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/genética , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Glucano Endo-1,3-beta-D-Glucosidasa/genética , Glucano Endo-1,3-beta-D-Glucosidasa/metabolismo , Glicosilación , Factores de Intercambio de Guanina Nucleótido , Higromicina B/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Manosiltransferasas/genética , Manosiltransferasas/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Fenotipo , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Compuestos de Piridinio/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Vacuolas/ultraestructura , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismoRESUMEN
The Saccharomyces cerevisiae mitotic exit network (MEN) is a conserved signaling network that coordinates CDK inactivation, cytokinesis and G1 gene transcription. The MEN Cdc14p phosphatase is sequestered in the nucleolus and transiently released in early anaphase and telophase. Cdc14p mediates mitotic exit by dephosphorylating Cdk1p substrates and promoting Cdk1p inactivation. Cdc14p also regulates the localization of chromosomal passenger proteins, which redistribute from kinetochores to the mitotic spindle during anaphase. Here we present evidence that the MEN protein kinase complex Mob1p-Dbf2p localizes to mitotic nuclei and partially colocalizes with Cdc14p and kinetochore proteins. Chromatin immunoprecipitation (ChIP) experiments reveal that Mob1p, Dbf2p, and Cdc14p associate with centromere DNA and require the centromere binding protein Ndc10p for this association. We establish that Mob1p is essential for maintaining the localization of Aurora, INCENP, and Survivin chromosomal passenger proteins on anaphase spindles, whereas Cdc14p and the Mob1p-Dbf2p-activating kinase Cdc15p are required for establishing passenger protein localization on the spindle. Moreover, Mob1p, but not Cdc15p, is required for dissociating Aurora from the kinetochore region. These findings reveal kinetochores as sites for MEN signaling and implicate MEN in coordinating chromosome segregation and/or spindle integrity with mitotic exit and cytokinesis via regulation of chromosome passenger proteins.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiología , Núcleo Celular/enzimología , Mitosis/fisiología , Fosfoproteínas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/fisiología , Huso Acromático/fisiología , Núcleo Celular/ultraestructura , Cromatina/fisiología , Cromatina/ultraestructura , Genes Reporteros , Cinetocoros/metabolismo , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Fosfatasas/metabolismo , Transcripción Genética , TransfecciónRESUMEN
Saccharomyces cerevisiae RAM is a conserved signaling network that regulates maintenance of polarized growth and daughter-cell-specific transcription, the latter of which is critical for septum degradation. Consequently, cells defective in RAM function (designated ramDelta) are round in morphology, form feeble mating projections, and fail to separate following cytokinesis. It was recently demonstrated that RAM genes are essential in strains containing functional SSD1 (SSD1-v), which encodes a protein of unknown function that binds the RAM Cbk1p kinase. Here we investigated the essential function of RAM in SSD1-v strains and identified two functional groups of dosage suppressors for ramDelta lethality. We establish that all ramDelta mutants exhibit cell integrity defects and cell lysis. All dosage suppressors rescue the lysis but not the cell polarity or cell separation defects of ramDelta cells. One class of dosage suppressors is composed of genes encoding cell wall proteins, indicating that alterations in cell wall structure can rescue the cell lysis in ramDelta cells. Another class of ramDelta dosage suppressors is composed of ZRG8 and SRL1, which encode two unrelated proteins of unknown function. We establish that ZRG8 and SRL1 share similar genetic interactions and phenotypes. Significantly, Zrg8p coprecipitates with Ssd1p, localizes similarly to RAM proteins, and is dependent on RAM for localization. Collectively, these data indicate that RAM and Ssd1p function cooperatively to control cell integrity and suggest that Zrg8p and Srl1p function as nonessential inhibitors of Ssd1p.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Morfogénesis/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Transducción de Señal/genética , Factores de Transcripción/metabolismo , Polaridad Celular/genética , Pared Celular/genética , Proteínas de Unión al ADN/genética , Immunoblotting , Inmunoprecipitación , Microscopía Fluorescente , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genéticaRESUMEN
The mitotic exit network (MEN) controls the exit from mitosis in budding yeast. The proline-directed phosphatase, Cdc14p, is a key component of MEN and promotes mitotic exit by activating the degradation of Clb2p and by reversing Cdk-mediated mitotic phosphorylation. Cdc14p is sequestered in the nucleolus during much of the cell cycle and is released in anaphase from the nucleolus to the nucleoplasm and cytoplasm to perform its functions. Release of Cdc14p from the nucleolus during anaphase is well understood. In contrast, less is known about the mechanism by which Cdc14p is released from the nucleus to the cytoplasm. Here we show that Cdc14p contains a leucine-rich nuclear export signal (NES) that interacts with Crm1p physically. Mutations in the NES of Cdc14p allow Clb2p degradation and mitotic exit, but cause abnormal morphology and cytokinesis defects at non-permissive temperatures. Cdc14p localizes to the bud neck, among other cytoplasmic structures, following its release from the nucleolus in late anaphase. This bud neck localization of Cdc14p is disrupted by mutations in its NES and by the leptomycin B-mediated inhibition of Crm1p. Our results suggest a requirement for Crm1p-dependent nuclear export of Cdc14p in coordinating mitotic exit and cytokinesis in budding yeast.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Carioferinas/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/citología , Saccharomycetales/metabolismo , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Animales , Proteínas de Ciclo Celular/química , Células Cultivadas , Ciclina B/metabolismo , Citocinesis , Fosfatasas de Especificidad Dual , Ácidos Grasos Insaturados/farmacología , Humanos , Ratones , Datos de Secuencia Molecular , Mutación/genética , Señales de Exportación Nuclear , Fenotipo , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/metabolismo , Transporte de Proteínas , Proteínas Tirosina Fosfatasas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomycetales/efectos de los fármacos , Alineación de Secuencia , Proteína Exportina 1RESUMEN
The genetics of the mating-type (MAT) locus have been studied extensively in Saccharomyces cerevisiae, but relatively little is known about how this complex system evolved. We compared the organization of MAT and mating-type-like (MTL) loci in nine species spanning the hemiascomycete phylogenetic tree. We inferred that the system evolved in a two-step process in which silent HMR/HML cassettes appeared, followed by acquisition of the Ho endonuclease from a mobile genetic element. Ho-mediated switching between an active MAT locus and silent cassettes exists only in the Saccharomyces sensu stricto group and their closest relatives: Candida glabrata, Kluyveromyces delphensis, and Saccharomyces castellii. We identified C. glabrata MTL1 as the ortholog of the MAT locus of K. delphensis and show that switching between C. glabrata MTL1a and MTL1alpha genotypes occurs in vivo. The more distantly related species Kluyveromyces lactis has silent cassettes but switches mating type without the aid of Ho endonuclease. Very distantly related species such as Candida albicans and Yarrowia lipolytica do not have silent cassettes. In Pichia angusta, a homothallic species, we found MATalpha2, MATalpha1, and MATa1 genes adjacent to each other on the same chromosome. Although some continuity in the chromosomal location of the MAT locus can be traced throughout hemiascomycete evolution and even to Neurospora, the gene content of the locus has changed with the loss of an HMG domain gene (MATa2) from the MATa idiomorph shortly after HO was recruited.
Asunto(s)
Desoxirribonucleasas de Localización Especificada Tipo II/genética , Evolución Molecular , Saccharomyces cerevisiae/genética , Proteínas del Grupo de Alta Movilidad/genética , Datos de Secuencia Molecular , Proteínas de Saccharomyces cerevisiaeRESUMEN
In Saccharomyces cerevisiae, polarized morphogenesis is critical for bud site selection, bud development, and cell separation. The latter is mediated by Ace2p transcription factor, which controls the daughter cell-specific expression of cell separation genes. Recently, a set of proteins that include Cbk1p kinase, its binding partner Mob2p, Tao3p (Pag1p), and Hym1p were shown to regulate both Ace2p activity and cellular morphogenesis. These proteins seem to form a signaling network, which we designate RAM for regulation of Ace2p activity and cellular morphogenesis. To find additional RAM components, we conducted genetic screens for bilateral mating and cell separation mutants and identified alleles of the PAK-related kinase Kic1p in addition to Cbk1p, Mob2p, Tao3p, and Hym1p. Deletion of each RAM gene resulted in a loss of Ace2p function and caused cell polarity defects that were distinct from formin or polarisome mutants. Two-hybrid and coimmunoprecipitation experiments reveal a complex network of interactions among the RAM proteins, including Cbk1p-Cbk1p, Cbk1p-Kic1p, Kic1p-Tao3p, and Kic1p-Hym1p interactions, in addition to the previously documented Cbk1p-Mob2p and Cbk1p-Tao3p interactions. We also identified a novel leucine-rich repeat-containing protein Sog2p that interacts with Hym1p and Kic1p. Cells lacking Sog2p exhibited the characteristic cell separation and cell morphology defects associated with perturbation in RAM signaling. Each RAM protein localized to cortical sites of growth during both budding and mating pheromone response. Hym1p was Kic1p- and Sog2p-dependent and Sog2p and Kic1p were interdependent for localization, indicating a close functional relationship between these proteins. Only Mob2p and Cbk1p were detectable in the daughter cell nucleus at the end of mitosis. The nuclear localization and kinase activity of the Mob2p-Cbk1p complex were dependent on all other RAM proteins, suggesting that Mob2p-Cbk1p functions late in the RAM network. Our data suggest that the functional architecture of RAM signaling is similar to the S. cerevisiae mitotic exit network and Schizosaccharomyces pombe septation initiation network and is likely conserved among eukaryotes.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Factores de Transcripción/metabolismo , Polaridad Celular/genética , Polaridad Celular/fisiología , Pruebas Genéticas , Péptidos y Proteínas de Señalización Intracelular , Modelos Moleculares , Morfogénesis/genética , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Serina-Treonina Quinasas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Activación Transcripcional , Técnicas del Sistema de Dos HíbridosRESUMEN
The Saccharomyces cerevisiae mitotic exit network (MEN) is a conserved signaling network that coordinates events associated with the M to G1 transition. We investigated the function of two S. cerevisiae proteins related to the MEN proteins Mob1p and Dbf2p kinase. Previous work indicates that cells lacking the Dbf2p-related protein Cbk1p fail to sustain polarized growth during early bud morphogenesis and mating projection formation (Bidlingmaier, S., E.L. Weiss, C. Seidel, D.G. Drubin, and M. Snyder. 2001. Mol. Cell. Biol. 21:2449-2462). Cbk1p is also required for Ace2p-dependent transcription of genes involved in mother/daughter separation after cytokinesis. Here we show that the Mob1p-related protein Mob2p physically associates with Cbk1p kinase throughout the cell cycle and is required for full Cbk1p kinase activity, which is periodically activated during polarized growth and mitosis. Both Mob2p and Cbk1p localize interdependently to the bud cortex during polarized growth and to the bud neck and daughter cell nucleus during late mitosis. We found that Ace2p is restricted to daughter cell nuclei via a novel mechanism requiring Mob2p, Cbk1p, and a functional nuclear export pathway. Furthermore, nuclear localization of Mob2p and Ace2p does not occur in mob1-77 or cdc14-1 mutants, which are defective in MEN signaling, even when cell cycle arrest is bypassed. Collectively, these data indicate that Mob2p-Cbk1p functions to (a) maintain polarized cell growth, (b) prevent the nuclear export of Ace2p from the daughter cell nucleus after mitotic exit, and (c) coordinate Ace2p-dependent transcription with MEN activation. These findings may implicate related proteins in linking the regulation of cell morphology and cell cycle transitions with cell fate determination and development.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Polaridad Celular , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/metabolismo , Mitosis , Fosfoproteínas/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Transporte Activo de Núcleo Celular , División Celular , Núcleo Celular/metabolismo , Histonas/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Sustancias Macromoleculares , Morfogénesis , Unión Proteica , Proteínas Serina-Treonina Quinasas , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMEN
Two cytoplasmically inherited determinants related by their manifestation to the control of translation accuracy were previously described in yeast. Cells carrying one of them, [PSI(+)], display a nonsense suppressor phenotype and contain a prion form of the Sup35 protein. Another element, [PIN(+)], determines the probability of de novo generation of [PSI(+)] and results from a prion form of several proteins, which can be functionally unrelated to Sup35p. Here we describe a novel nonchromosomal determinant related to the SUP35 gene. This determinant, designated [ISP(+)], was identified as an antisuppressor of certain sup35 mutations. We observed its loss upon growth on guanidine hydrochloride and subsequent spontaneous reappearance with high frequency. The reversible curability of [ISP(+)] resembles the behavior of yeast prions. However, in contrast to known prions, [ISP(+)] does not depend on the chaperone protein Hsp104. Though manifestation of both [ISP(+)] and [PSI(+)] is related to the SUP35 gene, the maintenance of [ISP(+)] does not depend on the prionogenic N-terminal domain of Sup35p and Sup35p is not aggregated in [ISP(+)] cells, thus ruling out the possibility that [ISP(+)] is a specific form of [PSI(+)]. We hypothesize that [ISP(+)] is a novel prion involved in the control of translation accuracy in yeast.