Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Protein Sci ; 33(6): e5023, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38801214

RESUMEN

Oncogenic mutations can destabilize signaling proteins, resulting in increased or unregulated activity. Thus, there is considerable interest in mapping the relationship between mutations and the stability of signaling proteins, to better understand the consequences of oncogenic mutations and potentially inform the development of new therapeutics. Here, we develop a tool to study protein-kinase stability in live mammalian cells and the effects of the HSP90 chaperone system on the stability of these kinases. We determine the expression levels of protein kinases by monitoring the fluorescence of fluorescent proteins fused to those kinases, normalized to that of co-expressed reference fluorescent proteins. We used this tool to study the dependence of Src- and Raf-family kinases on the HSP90 system. We demonstrate that this sensor reports on destabilization induced by oncogenic mutations in these kinases. We also show that Src-homology 2 and Src-homology 3 domains, which are required for autoinhibition of Src-family kinases, stabilize these kinase domains in the cell. Our expression-calibrated sensor enables the facile characterization of the effects of mutations and small-molecule drugs on protein-kinase stability.


Asunto(s)
Proteínas HSP90 de Choque Térmico , Humanos , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/química , Familia-src Quinasas/metabolismo , Familia-src Quinasas/química , Familia-src Quinasas/genética , Células HEK293 , Estabilidad Proteica , Mutación , Estabilidad de Enzimas , Fluorescencia
2.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38298175

RESUMEN

The ability of mutations to facilitate adaptation is central to evolution. To understand how mutations can lead to functional adaptation in a complex molecular machine, we created a defective version of the T4 clamp-loader complex, which is essential for DNA replication. This variant, which is ∼5,000-fold less active than the wild type, was made by replacing the catalytic domains with those from another phage. A directed-evolution experiment revealed that multiple substitutions to a single negatively charged residue in the chimeric clamp loader-Asp 86-restore fitness to within ∼20-fold of wild type. These mutations remove an adventitious electrostatic repulsive interaction between Asp 86 and the sliding clamp. Thus, the fitness decrease of the chimeric clamp loader is caused by a reduction in affinity between the clamp loader and the clamp. Deep mutagenesis shows that the reduced fitness of the chimeric clamp loader is also compensated for by lysine and arginine substitutions of several DNA-proximal residues in the clamp loader or the sliding clamp. Our results demonstrate that there is a latent capacity for increasing the affinity of the clamp loader for DNA and the sliding clamp, such that even single-point mutations can readily compensate for the loss of function due to suboptimal interactions elsewhere.


Asunto(s)
Adenosina Trifosfatasas , Adenosina Trifosfato , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/química , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Replicación del ADN , ADN
3.
Nat Struct Mol Biol ; 31(3): 424-435, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38177685

RESUMEN

Clamp loaders are AAA+ ATPases that facilitate high-speed DNA replication. In eukaryotic and bacteriophage clamp loaders, ATP hydrolysis requires interactions between aspartate residues in one protomer, present in conserved 'DEAD-box' motifs, and arginine residues in adjacent protomers. We show that functional defects resulting from a DEAD-box mutation in the T4 bacteriophage clamp loader can be compensated by widely distributed single mutations in the ATPase domain. Using cryo-EM, we discovered an unsuspected inactive conformation of the clamp loader, in which DNA binding is blocked and the catalytic sites are disassembled. Mutations that restore function map to regions of conformational change upon activation, suggesting that these mutations may increase DNA affinity by altering the energetic balance between inactive and active states. Our results show that there are extensive opportunities for evolution to improve catalytic efficiency when an inactive intermediate is involved.


Asunto(s)
Adenosina Trifosfatasas , Replicación del ADN , Adenosina Trifosfatasas/metabolismo , Microscopía por Crioelectrón , ADN , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Mutagénesis , Adenosina Trifosfato/metabolismo
4.
bioRxiv ; 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38106090

RESUMEN

Oncogenic mutations can destabilize signaling proteins, resulting in increased or unregulated activity. Thus, there is considerable interest in mapping the relationship between mutations and the stability of proteins, to better understand the consequences of oncogenic mutations and potentially inform the development of new therapeutics. Here, we develop a tool to study protein-kinase stability in live mammalian cells and the effects of the HSP90 chaperone system on the stability of these kinases. We monitor the fluorescence of kinases fused to a fluorescent protein relative to that of a co-expressed reference fluorescent protein. We used this tool to study the dependence of Src- and Raf-family kinases on the HSP90 system. We demonstrate that this sensor reports on destabilization induced by oncogenic mutations in these kinases. We also show that Src-homology 2 (SH2) and Src-homology 3 (SH3) domains, which are required for autoinhibition of Src-family kinases, stabilize these kinase domains in the cell. Our expression-calibrated sensor enables the facile characterization of the effects of mutations and small-molecule drugs on protein-kinase stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...