Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1342662, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38559768

RESUMEN

We previously established the selection-marker-free rice-based oral cholera vaccine (MucoRice-CTB) line 51A for human use by Agrobacterium-mediated co-transformation and conducted a double-blind, randomized, placebo-controlled phase I trial in Japan and the United States. Although MucoRice-CTB 51A was acceptably safe and well tolerated by healthy Japanese and U.S. subjects and induced CTB-specific antibodies neutralizing cholera toxin secreted by Vibrio cholerae, we were limited to a 6-g cohort in the U.S. trial because of insufficient production of MucoRice-CTB. Since MucoRice-CTB 51A did not grow in sunlight, we re-examined the previously established marker-free lines and selected MucoRice-CTB line 19A. Southern blot analysis of line 19A showed a single copy of the CTB gene. We resequenced the whole genome and detected the transgene in an intergenic region in chromosome 1. After establishing a master seed bank of MucoRice-CTB line 19A, we established a hydroponic production facility with LED lighting to reduce electricity consumption and to increase production capacity for clinical trials. Shotgun MS/MS proteomics analysis of MucoRice-CTB 19A showed low levels of α-amylase/trypsin inhibitor-like proteins (major rice allergens), which was consistent with the data for line 51A. We also demonstrated that MucoRice-CTB 19A had high oral immunogenicity and induced protective immunity against cholera toxin challenge in mice. These results indicate that MucoRice-CTB 19A is a suitable oral cholera vaccine candidate for Phase I and II clinical trials in humans, including a V. cholerae challenge study.

2.
Viruses ; 15(9)2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37766335

RESUMEN

Sapoviruses, like noroviruses, are single-stranded positive-sense RNA viruses classified in the family Caliciviridae and are recognized as a causative pathogen of diarrhea in infants and the elderly. Like human norovirus, human sapovirus (HuSaV) has long been difficult to replicate in vitro. Recently, it has been reported that HuSaV can be replicated in vitro by using intestinal epithelial cells (IECs) derived from human tissues and cell lines derived from testicular and duodenal cancers. In this study, we report that multiple genotypes of HuSaV can sufficiently infect and replicate in human-induced pluripotent stem cell-derived IECs. We also show that this HuSaV replication system can be used to investigate the conditions for inactivation of HuSaV by heat and alcohol, and the effects of virus neutralization of antisera obtained by immunization with vaccine antigens, under conditions closer to the living environment. The results of this study confirm that HuSaV can also infect and replicate in human normal IECs regardless of their origin and are expected to contribute to future virological studies.


Asunto(s)
Caliciviridae , Células Madre Pluripotentes Inducidas , Norovirus , Sapovirus , Anciano , Lactante , Humanos , Sapovirus/genética , Intestinos , Células Epiteliales
3.
NPJ Vaccines ; 8(1): 106, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37488116

RESUMEN

Respiratory syncytial virus (RSV) is a leading cause of upper and lower respiratory tract infection, especially in children and the elderly. Various vaccines containing the major transmembrane surface proteins of RSV (proteins F and G) have been tested; however, they have either afforded inadequate protection or are associated with the risk of vaccine-enhanced disease (VED). Recently, F protein-based maternal immunization and vaccines for elderly patients have shown promising results in phase III clinical trials, however, these vaccines have been administered by injection. Here, we examined the potential of using the ectodomain of small hydrophobic protein (SHe), also an RSV transmembrane surface protein, as a nasal vaccine antigen. A vaccine was formulated using our previously developed cationic cholesteryl-group-bearing pullulan nanogel as the delivery system, and SHe was linked in triplicate to pneumococcal surface protein A as a carrier protein. Nasal immunization of mice and cotton rats induced both SHe-specific serum IgG and mucosal IgA antibodies, preventing viral invasion in both the upper and lower respiratory tracts without inducing VED. Moreover, nasal immunization induced greater protective immunity against RSV in the upper respiratory tract than did systemic immunization, suggesting a critical role for mucosal RSV-specific IgA responses in viral elimination at the airway epithelium. Thus, our nasal vaccine induced effective protection against RSV infection in the airway mucosa and is therefore a promising vaccine candidate for further development.

4.
Vaccine ; 40(24): 3372-3379, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35484039

RESUMEN

MucoRice-CTB is a promising cold-chain-free oral cholera vaccine candidate. Here, we report a double-blind, randomized, placebo-controlled, phase I study conducted in the USA in which vaccination with the 6-g dose of MucoRice-CTB induced cross-reactive antigen-specific antibodies against the B subunit of cholera toxin (CTB) and enterotoxigenic Escherichia coli heat-labile enterotoxin without inducing serious adverse events. This dosage was acceptably safe and tolerable in healthy men and women. In addition, it induced a CTB-specific IgA response in the saliva of two of the nine treated subjects; in one subject, the immunological kinetics of the salivary IgA were similar to those of the serum CTB-specific IgA. Antibodies from three of the five responders to the vaccine prevented CTB from binding its GM1 ganglioside receptor. These results are consistent with those of the phase I study in Japan, suggesting that oral MucoRice-CTB induces neutralizing antibodies against diarrheal toxins regardless of ethnicity.


Asunto(s)
Vacunas contra el Cólera , Escherichia coli Enterotoxigénica , Oryza , Administración Oral , Toxina del Cólera , Femenino , Humanos , Inmunoglobulina A , Masculino , Oryza/metabolismo
5.
Pharmaceutics ; 15(1)2022 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-36678692

RESUMEN

Passive administration of neutralizing antibodies (Abs) is an attractive strategy for the control of gastrointestinal infections. However, an unanswered practical concern is the need to assure the stability of sufficient amounts of orally administered neutralizing Abs against intestinal pathogens (e.g., norovirus) in the harsh environment of the gastrointestinal tract. To this end, we expressed a single-domain Ab (VHH, nanobody) against norovirus on the cell surface of Lactobacillus, a natural and beneficial commensal component of the gut microbiome. First, we used intestinal epithelial cells generated from human induced pluripotent stem cells to confirm that VHH 1E4 showed neutralizing activity against GII.17 norovirus. We then expressed VHH 1E4 as a cell-wall-anchored form in Lactobacillus paracasei BL23. Flow cytometry confirmed the expression of VHH 1E4 on the surface of lactobacilli, and L. paracasei that expressed VHH 1E4 inhibited the replication of GII.17 norovirus in vitro. We then orally administered VHH 1E4-expressing L. paracasei BL23 to germ-free BALB/c mice and confirmed the presence of lactobacilli with neutralizing activity in the intestine for at least 10 days after administration. Thus, cell-wall-anchored VHH-displaying lactobacilli are attractive oral nanobody deliver vectors for passive immunization against norovirus infection.

6.
Front Plant Sci ; 12: 639953, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33868338

RESUMEN

Human norovirus is the leading cause of acute nonbacterial gastroenteritis in people of all ages worldwide. Currently, no licensed norovirus vaccine, pharmaceutical drug, or therapy is available for the control of norovirus infection. Here, we used a rice transgenic system, MucoRice, to produce a variable domain of a llama heavy-chain antibody fragment (VHH) specific for human norovirus (MucoRice-VHH). VHH is a small heat- and acid-stable protein that resembles a monoclonal antibody. Consequently, VHHs have become attractive and useful antibodies (Abs) for oral immunotherapy against intestinal infectious diseases. MucoRice-VHH constructs were generated at high yields in rice seeds by using an overexpression system with RNA interference to suppress the production of the major rice endogenous storage proteins. The average production levels of monomeric VHH (7C6) to GII.4 norovirus and heterodimeric VHH (7C6-1E4) to GII.4 and GII.17 noroviruses in rice seed were 0.54 and 0.28% (w/w), respectively, as phosphate buffered saline (PBS)-soluble VHHs. By using a human norovirus propagation system in human induced pluripotent stem-cell-derived intestinal epithelial cells (IECs), we demonstrated the high neutralizing activity of MucoRice expressing monomeric VHH (7C6) against GII.4 norovirus and of heterodimeric VHH (7C6-1E4) against both GII.4 and GII.17 noroviruses. In addition, MucoRice-VHH (7C6-1E4) retained neutralizing activity even after heat treatment at 90°C for 20 min. These results build a fundamental platform for the continued development of MucoRice-VHH heterodimer as a candidate for oral immunotherapy and for prophylaxis against GII.4 and GII.17 noroviruses in not only healthy adults and children but also immunocompromised patients and the elderly.

7.
Mol Pharm ; 18(4): 1582-1592, 2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33621107

RESUMEN

We previously developed a safe and effective nasal vaccine delivery system using a self-assembled nanosized hydrogel (nanogel) made from a cationic cholesteryl pullulan. Here, we generated three pneumococcal surface protein A (PspA) fusion antigens as a universal pneumococcal nasal vaccine and then encapsulated each PspA into a nanogel and mixed the three resulting monovalent formulations into a trivalent nanogel-PspA formulation. First, to characterize the nanogel-PspA formulations, we used native polyacrylamide gel electrophoresis (PAGE) to determine the average number of PspA molecules encapsulated per nanogel molecule. Second, we adopted two methods-a densitometric method based on lithium dodecyl sulfate (LDS)-PAGE and a biologic method involving sandwich enzyme-linked immunosorbent assay (ELISA)-to determine the PspA content in the nanogel formulations. Third, treatment of nanogel-PspA formulations by adding methyl-ß-cyclodextrin released each PspA in its native form, as confirmed through circular dichroism (CD) spectroscopy. However, when nanogel-PspA formulations were heat-treated at 80 °C for 16 h, CD spectroscopy showed that each PspA was released in a denatured form. Fourth, we confirmed that the nanogel-PspA formulations were internalized into nasal mucosa effectively and that each PspA was gradually released from the nanogel in epithelial cells in mice. Fifth, LDS-PAGE densitometry and ELISA both indicated that the amount of trivalent PspA was dramatically decreased in the heat-treated nanogel compared with that before heating. When mice were immunized nasally using the heat-treated formulation, the immunologic activity of each PspA was dramatically reduced compared with that of the untreated formulation; in both cases, the immunologic activity correlated well with the content of each PspA as determined by LDS-PAGE densitometry and ELISA. Finally, we confirmed that the trivalent nanogel-PspA formulation induced equivalent titers of PspA-specific serum IgG and mucosal IgA Abs in immunized mice. These results show that the specification methods we developed effectively characterized our nanogel-based trivalent PspA nasal vaccine formulation.


Asunto(s)
Proteínas Bacterianas/administración & dosificación , Higroscópicos/química , Nanogeles/química , Infecciones Neumocócicas/prevención & control , Vacunas Neumococicas/administración & dosificación , Administración Intranasal , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/farmacocinética , Liberación de Fármacos , Femenino , Glucanos/química , Humanos , Inmunogenicidad Vacunal , Ratones , Modelos Animales , Mucosa Nasal/metabolismo , Infecciones Neumocócicas/microbiología , Vacunas Neumococicas/genética , Vacunas Neumococicas/inmunología , Vacunas Neumococicas/farmacocinética , Proteínas Recombinantes de Fusión/administración & dosificación , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/inmunología , beta-Ciclodextrinas/química
8.
BMC Genomics ; 22(1): 59, 2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33468052

RESUMEN

BACKGROUND: We have previously developed a rice-based oral vaccine against cholera diarrhea, MucoRice-CTB. Using Agrobacterium-mediated co-transformation, we produced the selection marker-free MucoRice-CTB line 51A, which has three copies of the cholera toxin B subunit (CTB) gene and two copies of an RNAi cassette inserted into the rice genome. We determined the sequence and location of the transgenes on rice chromosomes 3 and 12. The expression of alpha-amylase/trypsin inhibitor, a major allergen protein in rice, is lower in this line than in wild-type rice. Line 51A was self-pollinated for five generations to fix the transgenes, and the seeds of the sixth generation produced by T5 plants were defined as the master seed bank (MSB). T6 plants were grown from part of the MSB seeds and were self-pollinated to produce T7 seeds (next seed bank; NSB). NSB was examined and its whole genome and proteome were compared with those of MSB. RESULTS: We re-sequenced the transgenes of NSB and MSB and confirmed the positions of the three CTB genes inserted into chromosomes 3 and 12. The DNA sequences of the transgenes were identical between NSB and MSB. Using whole-genome sequencing, we compared the genome sequences of three NSB with three MSB samples, and evaluated the effects of SNPs and genomic structural variants by clustering. No functionally important mutations (SNPs, translocations, deletions, or inversions of genic regions on chromosomes) between NSB and MSB samples were detected. Analysis of salt-soluble proteins from NSB and MSB samples by shot-gun MS/MS detected no considerable differences in protein abundance. No difference in the expression pattern of storage proteins and CTB in mature seeds of NSB and MSB was detected by immuno-fluorescence microscopy. CONCLUSIONS: All analyses revealed no considerable differences between NSB and MSB samples. Therefore, NSB can be used to replace MSB in the near future.


Asunto(s)
Vacunas contra el Cólera , Oryza , Toxina del Cólera/genética , Oryza/genética , Plantas Modificadas Genéticamente/genética , Proteómica , Banco de Semillas , Espectrometría de Masas en Tándem
9.
Lancet Microbe ; 2(9): e429-e440, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-35544149

RESUMEN

BACKGROUND: There are an estimated 1·3-4·0 million cases of cholera and 20 000-140 000 cholera-related deaths worldwide each year. The rice-based cholera toxin B subunit (CTB) vaccine, MucoRice-CTB, is an oral candidate vaccine that does not require a cold chain, has shown efficacy in animal models, and could be of benefit in places where there is a paucity of medical infrastructure. We aim to assess the safety, tolerability, and immunogenicity of MucoRice-CTB in humans. METHODS: We did a double-blind, randomised, placebo-controlled, dose-escalation, phase 1 study at one centre in Tokyo, Japan. Eligible participants were healthy adult men with measurable serum and faecal antibodies against CTB at screening. Participants were excluded if they had allergy to rice; history of cholera or travellers' diarrhoea; poorly controlled constipation; abnormal results on hepatic, renal, or haematological screening tests; use of any over-the-counter drugs within 7 days before first administration; inability to use a medically acceptable means of contraception; or other reasons by medical judgment of the investigator. Three dose cohorts of participants were randomly assigned by block to receive oral MucoRice-CTB (1 g, 3 g, or 6 g) or placebo (1 g, 3 g, or 6 g), once every 2 weeks for 8 weeks (for a total of 4 doses). The dose groups were performed sequentially, and each dose cohort was completed before the higher dose cohort began. All medical staff, participants, and most trial staff were masked to treatment allocation. The primary outcomes were safety and tolerability, measured by 12-lead electrocardiogram; vital signs; haematology, biochemistry, and urinalysis; rice protein-specific serum IgE antibody concentration; and monitoring of adverse events. Participants were assessed at baseline and at 1, 2, 4, 6, 8, and 16 weeks after the first administration of vaccine or placebo. The safety analysis set included all participants enrolled in the trial who received at least one dose of the study drug or placebo and were compliant with good clinical practice. The full analysis population included all participants enrolled in the trial who received at least one dose of the study drug and for whom any data were obtained after the start of study drug administration. Meta-genomic analysis of study participants was performed using bacterial DNA from faecal samples before vaccination. This trial is registered with UMIN.ac.jp, UMIN000018001. FINDINGS: Between June 23, 2015, and May 31, 2016, 226 participants were recruited and assessed for eligibility. 166 participants were excluded based on health condition or schedule. We then randomly selected 60 male volunteers aged 20-40 years who were enrolled and assigned to MucoRice-CTB (10 participants assigned to 1 g, 10 participants assigned to 3 g, and 10 participants assigned to 6 g), or placebo (10 participants assigned to 1 g, 10 participants assigned to 3 g, and 10 participants assigned to 6 g). All participants received at least one dose of study drug or placebo and were included in the safety analyses. Two participants given MucoRice-CTB 3 g and one participant given MucoRice-CTB 6 g were lost to follow-up and excluded from the efficacy analysis. Serum CTB-specific IgG and IgA antibody concentrations in participants who received 6 g MucoRice-CTB increased significantly in both a time-dependent and dose-dependent manner compared with those in the placebo groups (p for interaction=0·002 for IgG, p=0·004 for IgA). Genome analysis of subjects' faeces before vaccination revealed that compared to non-responders, responders had a gut microbiota of higher diversity with the presence of Escherichia coli and Shigella spp. 28 (93%) of 30 participants who received MucoRice-CTB at any dose had at least one adverse event during the study period, compared with 30 (100%) of 30 participants given placebo. Grade 3 or higher adverse events were reported in four participants in the MucoRice-CTB group (5 events) and four participants in the placebo group (10 events). The most common serious adverse event was haemoglobin decreased (2 events in 2 participants in the pooled MucoRice-CTB group, 2 events in 2 participants in the placebo group; all grade 3). INTERPRETATION: Participants given MucoRice-CTB showed increased CTB-specific serum IgG and IgA antibody concentrations without inducing serious adverse events, indicating that MucoRice-CTB could be a safe and potent vaccine to prevent diarrhoeal disease. MucoRice-CTB induced neutralising antibodies against diarrhoeal toxins in a gut microbiota-dependent manner. A similar phase 1 trial will be done with participants of other ethnicities to substantiate our findings. FUNDING: Translational Research Acceleration Network Program of Japan Agency for Medical Research and Development; Ministry of Education, Culture, Sports, Science and Technology, Japan; Science and Technology Research Partnership for Sustainable Development; Grant-in-Aid for Scientific Research (S) (18H05280) (to H K) from the Japan Society for the Promotion of Science (JSPS); Grant-in-Aid for Young Scientists (B) (16K16144) (to Y K) from JSPS; Grant-in-Aid for Young Scientists (18K18148) (to Y K) from JSPS; Grant from International Joint Usage/Research Center (K3002), the Institute of Medical Science, University of Tokyo.


Asunto(s)
COVID-19 , Cólera , Microbiota , Vacunas , Animales , Vacunas contra la COVID-19 , Diarrea , Humanos , Inmunogenicidad Vacunal , Inmunoglobulina A , Inmunoglobulina G , Masculino , SARS-CoV-2
10.
J Infect Dis ; 222(3): 470-478, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32211769

RESUMEN

Human noroviruses cause an estimated 685 million infections and 200 000 deaths annually worldwide. Although vaccines against GII.4 and GI.1 genotypes are under development, no information is available regarding vaccines or monoclonal antibodies to other noroviral genotypes. Here, we developed 2 variable-domain llama heavy-chain antibody fragment (VHHs) clones, 7C6 and 1E4, against GII.4 and GII.17 human noroviruses, respectively. Although 7C6 cross-reacted with virus-like particles (VLPs) of GII.17, GII.6, GII.3, and GII.4, it neutralized only GII.4 norovirus. In contrast, 1E4 reacted with and neutralized only GII.17 VLPs. Both VHHs blocked VLP binding to human induced pluripotent stem cell-derived intestinal epithelial cells and carbohydrate attachment factors. Using these 2 VHHs, we produced a heterodimeric VHH fragment that neutralized both GII.4 and GII.17 noroviruses. Because VHH fragments are heat- and acid-stable recombinant monoclonal antibodies, the heterodimer likely will be useful for oral immunotherapy and prophylaxis against GII.4 and GII.17 noroviruses in young, elderly, or immunocompromised persons.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Infecciones por Caliciviridae/prevención & control , Proteínas de la Cápside/inmunología , Inmunización Pasiva/métodos , Fragmentos de Inmunoglobulinas/inmunología , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Antivirales/inmunología , Infecciones por Caliciviridae/inmunología , Infecciones por Caliciviridae/virología , Proteínas de la Cápside/genética , Reacciones Cruzadas , Epítopos/inmunología , Humanos , Fragmentos de Inmunoglobulinas/administración & dosificación , Células Madre Pluripotentes Inducidas/inmunología , Norovirus/efectos de los fármacos , Norovirus/genética , Norovirus/inmunología , Proteínas Recombinantes/inmunología
12.
Stem Cell Reports ; 10(1): 314-328, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29233552

RESUMEN

Gut epithelial organoids are routinely used to investigate intestinal biology; however, current culture methods are not amenable to genetic manipulation, and it is difficult to generate sufficient numbers for high-throughput studies. Here, we present an improved culture system of human induced pluripotent stem cell (iPSC)-derived intestinal organoids involving four methodological advances. (1) We adopted a lentiviral vector to readily establish and optimize conditioned medium for human intestinal organoid culture. (2) We obtained intestinal organoids from human iPSCs more efficiently by supplementing WNT3A and fibroblast growth factor 2 to induce differentiation into definitive endoderm. (3) Using 2D culture, followed by re-establishment of organoids, we achieved an efficient transduction of exogenous genes in organoids. (4) We investigated suspension organoid culture without scaffolds for easier harvesting and assays. These techniques enable us to develop, maintain, and expand intestinal organoids readily and quickly at low cost, facilitating high-throughput screening of pathogenic factors and candidate treatments for gastrointestinal diseases.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Epiteliales/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Mucosa Intestinal/metabolismo , Organoides/metabolismo , Animales , Células Epiteliales/citología , Vectores Genéticos , Humanos , Células Madre Pluripotentes Inducidas/citología , Mucosa Intestinal/citología , Lentivirus , Ratones , Organoides/citología , Proteína Wnt3A/genética , Proteína Wnt3A/metabolismo
13.
Sci Rep ; 7(1): 5196, 2017 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-28701756

RESUMEN

Plant-based human vaccines have been actively developed in recent years, and rice (Oryza sativa L.) is one of the best candidate crops for their production and delivery. By expressing a modified cholera toxin B (CTB) subunit, we previously developed MucoRice-CTB, a rice-based vaccine against cholera, which is caused by infection of the intestine with the bacteria Vibrio cholerae. MucoRice-CTB lines have been extensively characterized by whole-genome sequencing and proteome analyses to evaluate the mutation profiles and proteome status, respectively. Here, we report non-targeted metabolomic profiling of the MucoRice-CTB transgenic rice line 51A (MR-CTB51A), MucoRice-RNAi (MR-RNAi), and their non-transgenic parent line by using gas chromatography-time-of-flight mass spectrometry. The levels of several amino acids, organic acids, carbohydrates, lipids, and secondary metabolites were significantly increased in MR-CTB51A compared with the non-transgenic parent line. These metabolomics results complement essential information obtained by genome sequencing and proteomics approaches, thereby contributing to comprehensive understanding of the properties of MucoRice-CTB as a plant-based vaccine.


Asunto(s)
Toxina del Cólera/genética , Metaboloma , Metabolómica , Oryza/genética , Oryza/metabolismo , Semillas/genética , Semillas/metabolismo , Cromatografía Líquida de Alta Presión , Cromatografía de Gases y Espectrometría de Masas , Expresión Génica , Metabolómica/métodos , Fenilpropionatos/metabolismo , Plantas Modificadas Genéticamente , Interferencia de ARN
14.
Regul Toxicol Pharmacol ; 76: 128-36, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26851506

RESUMEN

To develop oral antibody therapy against rotavirus infection, we previously produced a recombinant fragment of llama heavy-chain antibody to rotavirus (ARP1) in rice seeds (MucoRice-ARP1). We intend to use a purification-free rice powder for clinical application but needed to check whether MucoRice-ARP1 had increased levels of known allergen proteins. For this purpose, we used two-dimensional fluorescence difference gel electrophoresis to compare the allergen protein levels in MucoRice-ARP1 and wild-type rice. We detected no notable differences, except in the levels of α-amylase/trypsin inhibitor-like family proteins. Because by this approach we could not completely separate ARP1 from the proteins of this family, we confirmed the absence of changes in the levels of these allergens by using shotgun mass spectrometry as well as immunoblot. By using immunoelectron microscopy, we also showed that RAG2, a member of the α-amylase/trypsin inhibitor-like protein family, was relocated from protein bodies II to the plasma membrane or cell wall in MucoRice-ARP1 seed. The relocation did not affect the level of RAG2. We demonstrated that most of the known rice allergens were not considerably upregulated by the genetic modification in MucoRice-ARP1. Our data suggest that MucoRice-ARP1 is a potentially safe oral antibody for clinical application.


Asunto(s)
Alérgenos/inmunología , Anticuerpos Antivirales/biosíntesis , Fragmentos de Inmunoglobulinas/biosíntesis , Cadenas Pesadas de Inmunoglobulina/biosíntesis , Oryza/metabolismo , Proteínas de Plantas/inmunología , Plantas Modificadas Genéticamente/metabolismo , Vacunas contra Rotavirus/biosíntesis , Rotavirus/inmunología , Alérgenos/genética , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/inmunología , Antígenos de Plantas , Regulación de la Expresión Génica de las Plantas , Fragmentos de Inmunoglobulinas/genética , Fragmentos de Inmunoglobulinas/inmunología , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/inmunología , Espectrometría de Masas , Microscopía Inmunoelectrónica , Oryza/genética , Oryza/inmunología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/inmunología , Proteómica/métodos , Medición de Riesgo , Rotavirus/genética , Vacunas contra Rotavirus/genética , Vacunas contra Rotavirus/inmunología , Electroforesis Bidimensional Diferencial en Gel
15.
Plant Cell Rep ; 35(3): 667-79, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26661780

RESUMEN

KEY MESSAGE: The first Good Manufacturing Practices production of a purification-free rice-based oral cholera vaccine (MucoRice-CTB) from transgenic plants in a closed cultivation system yielded a product meeting regulatory requirements. Despite our knowledge of their advantages, plant-based vaccines remain unavailable for human use in both developing and industrialized countries. A leading, practical obstacle to their widespread use is producing plant-based vaccines that meet governmental regulatory requirements. Here, we report the first production according to current Good Manufacturing Practices of a rice-based vaccine, the cholera vaccine MucoRice-CTB, at an academic institution. To this end, we established specifications and methods for the master seed bank (MSB) of MucoRice-CTB, which was previously generated as a selection-marker-free line, evaluated its propagation, and given that the stored seeds must be renewed periodically. The production of MucoRice-CTB incorporated a closed hydroponic system for cultivating the transgenic plants, to minimize variations in expression and quality during vaccine manufacture. This type of molecular farming factory can be operated year-round, generating three harvests annually, and is cost- and production-effective. Rice was polished to a ratio of 95 % and then powdered to produce the MucoRice-CTB drug substance, and the identity, potency, and safety of the MucoRice-CTB product met pre-established release requirements. The formulation of MucoRice-CTB made by fine-powdering of drug substance and packaged in an aluminum pouch is being evaluated in a physician-initiated phase I study.


Asunto(s)
Vacunas contra el Cólera/genética , Oryza/genética , Plantas Modificadas Genéticamente/genética , Tecnología Farmacéutica/métodos , Administración Oral , Animales , Western Blotting , Cólera/inmunología , Cólera/microbiología , Cólera/prevención & control , Toxina del Cólera/toxicidad , Vacunas contra el Cólera/administración & dosificación , Vacunas contra el Cólera/inmunología , Análisis Costo-Beneficio , Diarrea/inducido químicamente , Diarrea/inmunología , Diarrea/prevención & control , Embalaje de Medicamentos , Estabilidad de Medicamentos , Humanos , Inmunización/métodos , Ratones , Oryza/crecimiento & desarrollo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Polvos , Reproducibilidad de los Resultados , Tecnología Farmacéutica/economía , Vibrio cholerae/inmunología
16.
Vaccine ; 33(39): 5204-11, 2015 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26254309

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) causes severe diarrhea in both neonatal and weaned pigs. Because the cholera toxin B subunit (CTB) has a high level of amino acid identity to the ETEC heat-labile toxin (LT) B-subunit (LTB), we selected MucoRice-CTB as a vaccine candidate against ETEC-induced pig diarrhea. When pregnant sows were orally immunized with MucoRice-CTB, increased amounts of antigen-specific IgG and IgA were produced in their sera. CTB-specific IgG was secreted in the colostrum and transferred passively to the sera of suckling piglets. IgA antibodies in the colostrum and milk remained high with a booster dose after farrowing. Additionally, when weaned minipigs were orally immunized with MucoRice-CTB, production of CTB-specific intestinal SIgA, as well as systemic IgG and IgA, was induced. To evaluate the cross-protective effect of MucoRice-CTB against ETEC diarrhea, intestinal loop assay with ETEC was conducted. The fluid volume accumulated in the loops of minipigs immunized with MucoRice-CTB was significantly lower than that in control minipigs, indicating that MucoRice-CTB-induced cross-reactive immunity could protect weaned pigs from diarrhea caused by ETEC. MucoRice-CTB could be a candidate oral vaccine for inducing both passive and active immunity to protect both suckling and weaned piglets from ETEC diarrhea.


Asunto(s)
Diarrea/veterinaria , Escherichia coli Enterotoxigénica/inmunología , Infecciones por Escherichia coli/veterinaria , Vacunas contra Escherichia coli/inmunología , Inmunidad Mucosa , Oryza/genética , Enfermedades de los Porcinos/prevención & control , Administración Oral , Animales , Anticuerpos Antibacterianos/sangre , Calostro/inmunología , Diarrea/prevención & control , Escherichia coli Enterotoxigénica/genética , Infecciones por Escherichia coli/prevención & control , Vacunas contra Escherichia coli/administración & dosificación , Vacunas contra Escherichia coli/genética , Femenino , Inmunización Pasiva , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Leche/inmunología , Embarazo , Suero/inmunología , Porcinos , Vacunación , Vacunas Comestibles/administración & dosificación , Vacunas Comestibles/genética , Vacunas Comestibles/inmunología
17.
BMC Genomics ; 16: 48, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25653106

RESUMEN

BACKGROUND: We have developed a rice-based oral cholera vaccine named MucoRice-CTB (Cholera Toxin B-subunit) by using an Agrobacterium tumefaciens-mediated co-transformation system. To assess the genome-wide effects of this system on the rice genome, we compared the genomes of three selection marker-free MucoRice-CTB lines with those of two wild-type rice lines (Oryza sativa L. cv. Nipponbare). Mutation profiles of the transgenic and wild-type genomes were examined by next-generation sequencing (NGS). RESULTS: Using paired-end short-read sequencing, a total of more than 300 million reads for each line were obtained and mapped onto the rice reference genome. The number and distribution of variants were similar in all five lines: the numbers of line-specific variants ranged from 524 to 842 and corresponding mutation rates ranged from 1.41 × 10(-6) per site to 2.28 × 10(-6) per site. The frequency of guanine-to-thymine and cytosine-to-adenine transversions was higher in MucoRice-CTB lines than in WT lines. The transition-to-transversion ratio was 1.12 in MucoRice-CTB lines and 1.65 in WT lines. Analysis of variant-sharing profiles showed that the variants common to all five lines were the most abundant, and the numbers of line-specific variant for all lines were similar. The numbers of non-synonymous amino acid substitutions in MucoRice-CTB lines (15 to 21) were slightly higher than those in WT lines (7 or 8), whereas the numbers of frame shifts were similar in all five lines. CONCLUSIONS: We conclude that MucoRice-CTB and WT are almost identical at the genomic level and that genome-wide effects caused by the Agrobacterium-mediated transformation system for marker-free MucoRice-CTB lines were slight. The comparative whole-genome analyses between MucoRice-CTB and WT lines using NGS provides a reliable estimate of genome-wide differences. A similar approach may be applicable to other transgenic rice plants generated by using this Agrobacterium-mediated transformation system.


Asunto(s)
Agrobacterium tumefaciens/genética , Toxina del Cólera/genética , Genoma de Planta , Oryza/genética , Toxina del Cólera/biosíntesis , Plantas Modificadas Genéticamente/genética , Transformación Genética
18.
Dig Dis Sci ; 59(11): 2682-92, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24838500

RESUMEN

BACKGROUND: Peyer's patches (PPs), which are covered by specialized follicle-associated epithelium (FAE) including M cells, play a central role in immune induction in the gastrointestinal tract. This study is to investigate a new molecule to characterize PPs. METHODS: We generated a monoclonal antibody (mAb 10-15-3-3) that specifically reacts to the epithelium of PPs and isolated lymphoid follicles. Target antigen was analyzed by immunoprecipitation and mass spectrometry. Localization and expression of target antigen were evaluated by immunofluorescence, in situ hybridization and real-time PCR. RESULTS: Immunoprecipitation and mass spectrometry revealed that mAb 10-15-3-3 recognized apolipoprotein A-IV (ApoA-IV), a well-known lipid transporter; this finding was confirmed by the specific reactivity of mAb 10-15-3-3 to cells transfected with the murine ApoA-IV gene. Immunofluorescence using mAb 10-15-3-3 showed intestinal localization of ApoA-IV, in which strong expression of the ApoA-IV protein occurred throughout the entire intestinal epithelium during developing period before weaning but was restricted to the FAE in adult mice. In support of these findings, in situ hybridization showed strong expression of the ApoA-IV gene throughout the entire intestinal epithelium during developing period before weaning, but this expression was restricted to the FAE predominantly and the tips of villi to a lesser extent in adult mice. Deficiency of ApoA-IV had no effect on the organogenesis of PP in mice. CONCLUSIONS: Our current results reveal ApoA-IV as a novel FAE-specific marker especially in the upper small intestine of adult mice.


Asunto(s)
Apolipoproteínas A/metabolismo , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Animales , Anticuerpos Monoclonales , Apolipoproteínas A/genética , Biomarcadores , Células CHO , Cricetinae , Cricetulus , Femenino , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Ganglios Linfáticos Agregados , Embarazo , ARN Mensajero , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
19.
J Biotechnol ; 175: 45-52, 2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-24548461

RESUMEN

Tumor necrosis factor alpha (TNF) plays a pivotal role in chronic inflammatory diseases such as rheumatoid arthritis and Crohn's disease. Although anti-TNF antibody therapy is now commonly used to treat patients suffering from these inflammatory conditions, the cost of treatment continues to be a concern. Here, we developed a rice transgenic system for the production of a llama variable domain of a heavy-chain antibody fragment (VHH) specific for mouse TNF in rice seeds (MucoRice-mTNF-VHH). MucoRice-mTNF-VHH was produced at high levels in the rice seeds when we used our most recent transgene-overexpression system with RNA interference technology that suppresses the production of major rice endogenous storage proteins while enhancing the expression of the transgene-derived protein. Production levels of mTNF-VHH in rice seeds reached an average of 1.45% (w/w). Further, approximately 91% of mTNF-VHH was released easily when the powder form of MucoRice-mTNF-VHH was mixed with PBS. mTNF-VHH purified by means of single-step gel filtration from rice PBS extract showed high neutralizing activity in an in vitro mTNF cytotoxicity assay using WEHI164 cells. In addition, purified mTNF-VHH suppressed progression of collagen-induced arthritis in mice. These results show that this rice-expression system is useful for the production of neutralizing VHH antibody specific for mTNF.


Asunto(s)
Antirreumáticos/administración & dosificación , Artritis Experimental/terapia , Cadenas Pesadas de Inmunoglobulina/inmunología , Región Variable de Inmunoglobulina/inmunología , Oryza/genética , Factor de Necrosis Tumoral alfa/inmunología , Animales , Antirreumáticos/uso terapéutico , Artritis Experimental/inmunología , Camélidos del Nuevo Mundo/inmunología , Masculino , Ratones , Oryza/inmunología , Plantas Modificadas Genéticamente , Semillas/genética , Semillas/inmunología , Solubilidad , Factor de Necrosis Tumoral alfa/genética
20.
Plant Cell Rep ; 33(1): 75-87, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24085308

RESUMEN

KEY MESSAGE: RNAi-mediated suppression of the endogenous storage proteins in MucoRice-CTB-RNAi seeds affects not only the levels of overexpressed CTB and RAG2 allergen, but also the localization of CTB and RAG2. A purification-free rice-based oral cholera vaccine (MucoRice-CTB) was previously developed by our laboratories using a cholera toxin B-subunit (CTB) overexpression system. Recently, an advanced version of MucoRice-CTB was developed (MucoRice-CTB-RNAi) through the use of RNAi to suppress the production of the endogenous storage proteins 13-kDa prolamin and glutelin, so as to increase CTB expression. The level of the α-amylase/trypsin inhibitor-like protein RAG2 (a major rice allergen) was reduced in MucoRice-CTB-RNAi seeds in comparison with wild-type (WT) rice. To investigate whether RNAi-mediated suppression of storage proteins affects the localization of overexpressed CTB and major rice allergens, we generated an RNAi line without CTB (MucoRice-RNAi) and investigated gene expression, and protein production and localization of two storage proteins, CTB, and five major allergens in MucoRice-CTB, MucoRice-CTB-RNAi, MucoRice-RNAi, and WT rice. In all lines, glyoxalase I was detected in the cytoplasm, and 52- and 63-kDa globulin-like proteins were found in the aleurone particles. In WT, RAG2 and 19-kDa globulin were localized mainly in protein bodies II (PB-II) of the endosperm cells. Knockdown of glutelin A led to a partial destruction of PB-II and was accompanied by RAG2 relocation to the plasma membrane/cell wall and cytoplasm. In MucoRice-CTB, CTB was localized in the cytoplasm and PB-II. In MucoRice-CTB-RNAi, CTB was produced at a level six times that in MucoRice-CTB and was localized, similar to RAG2, in the plasma membrane/cell wall and cytoplasm. Our findings indicate that the relocation of CTB in MucoRice-CTB-RNAi may contribute to down-regulation of RAG2.


Asunto(s)
Alérgenos/metabolismo , Toxina del Cólera/metabolismo , Oryza/metabolismo , Interferencia de ARN , Proteínas de Almacenamiento de Semillas/metabolismo , Semillas/metabolismo , Alérgenos/ultraestructura , Electroforesis en Gel de Poliacrilamida , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica de las Plantas , Glútenes/metabolismo , Oryza/genética , Oryza/ultraestructura , Plantas Modificadas Genéticamente , ARN Mensajero/genética , ARN Mensajero/metabolismo , Semillas/genética , Semillas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...