Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Radiat Res ; 62(2): 309-318, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33341880

RESUMEN

The purpose of this study was to compare single-arc (SA) and double-arc (DA) treatment plans, which are planning techniques often used in prostate cancer volumetric modulated arc therapy (VMAT), in the presence of intrafractional deformation (ID) to determine which technique is superior in terms of target dose coverage and sparing of the organs at risk (OARs). SA and DA plans were created for 27 patients with localized prostate cancer. ID was introduced to the clinical target volume (CTV), rectum and bladder to obtain blurred dose distributions using an in-house software. ID was based on the motion probability function of each structure voxel and the intrafractional motion of the respective organs. From the resultant blurred dose distributions of SA and DA plans, various parameters, including the tumor control probability, normal tissue complication probability, homogeneity index, conformity index, modulation complexity score for VMAT, dose-volume indices and monitor units (MUs), were evaluated to compare the two techniques. Statistical analysis showed that most CTV and rectum parameters were significantly larger for SA plans than for DA plans (P < 0.05). Furthermore, SA plans had fewer MUs and were less complex (P < 0.05). The significant differences observed had no clinical significance, indicating that both plans are comparable in terms of target and OAR dosimetry when ID is considered. The use of SA plans is recommended for prostate cancer VMAT because they can be delivered in shorter treatment times than DA plans, and therefore benefit the patients.


Asunto(s)
Órganos en Riesgo/efectos de la radiación , Neoplasias de la Próstata/radioterapia , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Humanos , Masculino , Neoplasias de la Próstata/diagnóstico por imagen
2.
PLoS One ; 13(4): e0195296, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29621319

RESUMEN

For CyberKnife-mediated prostate cancer treatment, a tumour-tracking approach is applied to correct the target location by acquiring X-ray images of implanted fiducial markers intermittently. This study investigated the dosimetric impact of intra-fraction prostate motion during CyberKnife treatment. We retrospectively analyzed 16 patients treated using the CyberKnife (35 Gy delivered in five fractions). Using log files of recorded prostate motion, the intra-fraction prostate motion was simulated. We defined the worst-case intra-fraction prostate motion as the difference between pre- and post-deviation on log files and shifted structure sets according to the corresponding offsets for each beam. The dose-volume indices were calculated and compared with the original plan in terms of clinical target volume (CTV), planning target volume (CTV plus a 2-mm margin), rectum, bladder, and urethra. Prostate motions of >3, >5, and >10 mm were observed for 31.3, 9.1, and 0.5% of the 1929 timestamps, respectively. Relative differences between the simulated and original plans were mostly less than 1%. Although significant decreases were observed in D50% and D98% of the target, absolute dose differences were <0.1 Gy compared with the planned dose. The dosimetric impact of intra-fraction prostate motion may be small even with longer treatment durations, indicating that the tumour tracking using the CyberKnife could be a robust system for examining prostate motion.


Asunto(s)
Neoplasias de la Próstata/cirugía , Procedimientos Quirúrgicos Robotizados/métodos , Fraccionamiento de la Dosis de Radiación , Marcadores Fiduciales , Humanos , Masculino , Próstata/cirugía , Radiometría/métodos , Radiocirugia/métodos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Recto/cirugía , Estudios Retrospectivos
3.
J Radiat Res ; 59(2): 164-172, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29253275

RESUMEN

Correlation model error (CME) between the internal target and the external surrogate, and marker-tumor correlation error (MTCE) between the tumor and the implanted marker occur during marker-based real-time tumor tracking. The effects of these intrafraction and interfraction errors on the dose coverage in the clinical target volume (CTV) and on tumor control probability (TCP) for hepatocellular carcinoma (HCC) were evaluated in this study. Eight HCC patients treated with non-isocentric dose delivery by a robotic radiosurgery system were enrolled. The CMEs were extracted from the treatment log file, and the MTCEs were calculated from the preceding study. The CMEs and MTCEs were randomly added to each beam's robot position, and the changes in the TCP and the 2%, 95% and 99% dose coverage values for the CTV (D2, D95 and D99) were simulated. The data were statistically analyzed as a function of the CTV to planning target volume (PTV) margin, the dose fraction and the marker-tumor distance. Significant differences were observed in the majority of the CTV D2, D95 and D99 values and the TCP values. However, a linear regression revealed that ∆CTV D2, D95 and D99 have a weak correlation with ∆TCP. A dose-difference metric would be unable to detect a critical error for tumor control if the coverage changes for the CTV and ∆TCP were weakly correlated. Because the simulated TCP-based parameter determination was based on the dose simulation, including predicted interfraction and intrafraction errors, we concluded that a 95th percentile TCP-based parameter determination would be a robust strategy for ensuring tumor control while reducing doses to normal structures.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/radioterapia , Neoplasias Hepáticas/radioterapia , Radiometría , Radiocirugia , Humanos , Análisis de Regresión
4.
J Radiat Res ; 58(3): 378-385, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-27811201

RESUMEN

In this CyberKnife® dose verification study, we investigated the effectiveness of the novel potential error (PE) concept when applied to the determination of a robust measurement point for targeting errors. PE was calculated by dividing the differences between the maximum increases and decreases in dose distributions by the original distribution after obtaining the former by shifting the source-to-axis and off-axis distances of each beam by ±1.0 mm. Thus, PE values and measurement point dose heterogeneity were analyzed in 48 patients who underwent CyberKnife radiotherapy. Sixteen patients who received isocentric dose delivery were set as the control group, whereas 32 who received non-isocentric dose delivery were divided into two groups of smaller PE (SPE) and larger PE (LPE) by using their median PE value. The mean dose differences (± standard deviations) were 1.0 ± 0.9%, 0.5 ± 1.4% and 4.1 ± 2.8% in the control, SPE and LPE groups, respectively. We observed significant correlations of the dose difference with the PE value (r = 0.582, P < 0.001) and dose heterogeneity (r = 0.471, P < 0.001). We concluded that when determining a robust measurement point for CyberKnife point dose verification, PE evaluation was more effective than the conventional dose heterogeneity-based method that introduced optimal measurement point dose heterogeneity of <10% across the detector.


Asunto(s)
Relación Dosis-Respuesta en la Radiación , Garantía de la Calidad de Atención de Salud , Radiocirugia/normas , Procedimientos Quirúrgicos Robotizados/normas , Humanos , Reproducibilidad de los Resultados
5.
J Radiat Res ; 57(3): 258-64, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26661854

RESUMEN

A patient-specific quality assurance (QA) test is conducted to verify the accuracy of dose delivery. It generally consists of three verification processes: the absolute point dose difference, the planar dose differences at each gantry angle, and the planar dose differences by 3D composite irradiation. However, this imposes a substantial workload on medical physicists. The objective of this study was to determine whether our novel method that predicts the 3D delivered dose allows certain patient-specific IMRT QAs to be curtailed. The object was IMRT QA for the pelvic region with regard to point dose and composite planar dose differences. We compared measured doses, doses calculated in the treatment planning system, and doses predicted by in-house software. The 3D predicted dose was reconstructed from the per-field measurement by incorporating the relative dose error distribution into the original dose grid of each beam. All point dose differences between the measured and the calculated dose were within ±3%, whereas 93.3% of them between the predicted and the calculated dose were within ±3%. As for planar dose differences, the gamma passing rates between the calculated and the predicted dose were higher than those between the calculated and the measured dose. Comparison and statistical analysis revealed a correlation between the predicted and the measured dose with regard to both point dose and planar dose differences. We concluded that the prediction-based approach is an accurate substitute for the conventional measurement-based approach in IMRT QA for the pelvic region. Our novel approach will help medical physicists save time on IMRT QA.


Asunto(s)
Garantía de la Calidad de Atención de Salud , Radioterapia de Intensidad Modulada/métodos , Radioterapia de Intensidad Modulada/normas , Relación Dosis-Respuesta a Droga , Rayos gamma , Humanos , Dosificación Radioterapéutica
6.
J Radiat Res ; 55(6): 1131-40, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24957755

RESUMEN

Technical developments in radiotherapy (RT) have created a need for systematic quality assurance (QA) to ensure that clinical institutions deliver prescribed radiation doses consistent with the requirements of clinical protocols. For QA, an ideal dose verification system should be independent of the treatment-planning system (TPS). This paper describes the development and reproducibility evaluation of a Monte Carlo (MC)-based standard LINAC model as a preliminary requirement for independent verification of dose distributions. The BEAMnrc MC code is used for characterization of the 6-, 10- and 15-MV photon beams for a wide range of field sizes. The modeling of the LINAC head components is based on the specifications provided by the manufacturer. MC dose distributions are tuned to match Varian Golden Beam Data (GBD). For reproducibility evaluation, calculated beam data is compared with beam data measured at individual institutions. For all energies and field sizes, the MC and GBD agreed to within 1.0% for percentage depth doses (PDDs), 1.5% for beam profiles and 1.2% for total scatter factors (Scps.). Reproducibility evaluation showed that the maximum average local differences were 1.3% and 2.5% for PDDs and beam profiles, respectively. MC and institutions' mean Scps agreed to within 2.0%. An MC-based standard LINAC model developed to independently verify dose distributions for QA of multi-institutional clinical trials and routine clinical practice has proven to be highly accurate and reproducible and can thus help ensure that prescribed doses delivered are consistent with the requirements of clinical protocols.


Asunto(s)
Ensayos Clínicos como Asunto/normas , Ensayos Clínicos como Asunto/estadística & datos numéricos , Humanos , Modelos Teóricos , Método de Montecarlo , Estudios Multicéntricos como Asunto , Aceleradores de Partículas/normas , Aceleradores de Partículas/estadística & datos numéricos , Fotones/uso terapéutico , Garantía de la Calidad de Atención de Salud/estadística & datos numéricos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/normas , Planificación de la Radioterapia Asistida por Computador/estadística & datos numéricos , Radioterapia de Alta Energía/normas , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA