Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Virol ; 98(7): e0079424, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38940558

RESUMEN

Coronavirus disease 2019 (COVID-19) has claimed millions of lives since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and lung disease appears the primary cause of death in COVID-19 patients. However, the underlying mechanisms of COVID-19 pathogenesis remain elusive, and there is no existing model where human disease can be faithfully recapitulated and conditions for the infection process can be experimentally controlled. Herein we report the establishment of an ex vivo human precision-cut lung slice (hPCLS) platform for studying SARS-CoV-2 pathogenicity and innate immune responses, and for evaluating the efficacy of antiviral drugs against SARS-CoV-2. We show that while SARS-CoV-2 continued to replicate during the course of infection of hPCLS, infectious virus production peaked within 2 days, and rapidly declined thereafter. Although most proinflammatory cytokines examined were induced by SARS-CoV-2 infection, the degree of induction and types of cytokines varied significantly among hPCLS from individual donors. Two cytokines in particular, IP-10 and IL-8, were highly and consistently induced, suggesting a role in the pathogenesis of COVID-19. Histopathological examination revealed focal cytopathic effects late in the infection. Transcriptomic and proteomic analyses identified molecular signatures and cellular pathways that are largely consistent with the progression of COVID-19 in patients. Furthermore, we show that homoharringtonine, a natural plant alkaloid derived from Cephalotoxus fortunei, not only inhibited virus replication but also production of pro-inflammatory cytokines, and thus ameliorated the histopathological changes caused by SARS-CoV-2 infection, demonstrating the usefulness of the hPCLS platform for evaluating antiviral drugs. IMPORTANCE: Here, established an ex vivo human precision-cut lung slice platform for assessing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, viral replication kinetics, innate immune response, disease progression, and antiviral drugs. Using this platform, we identified early induction of specific cytokines, especially IP-10 and IL-8, as potential predictors for severe coronavirus disease 2019 (COVID-19), and uncovered a hitherto unrecognized phenomenon that while infectious virus disappears at late times of infection, viral RNA persists and lung histopathology commences. This finding may have important clinical implications for both acute and post-acute sequelae of COVID-19. This platform recapitulates some of the characteristics of lung disease observed in severe COVID-19 patients and is therefore a useful platform for understanding mechanisms of SARS-CoV-2 pathogenesis and for evaluating the efficacy of antiviral drugs.


Asunto(s)
Antivirales , COVID-19 , Citocinas , Pulmón , SARS-CoV-2 , Replicación Viral , Humanos , Pulmón/virología , Pulmón/patología , Pulmón/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Antivirales/farmacología , COVID-19/virología , COVID-19/patología , Citocinas/metabolismo , Replicación Viral/efectos de los fármacos , Inmunidad Innata , Tratamiento Farmacológico de COVID-19
2.
bioRxiv ; 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37131640

RESUMEN

COVID-19 has claimed millions of lives since the emergence of SARS-CoV-2, and lung disease appears the primary cause of the death in COVID-19 patients. However, the underlying mechanisms of COVID-19 pathogenesis remain elusive, and there is no existing model where the human disease can be faithfully recapitulated and conditions for the infection process can be experimentally controlled. Herein we report the establishment of an ex vivo human precision-cut lung slice (hPCLS) platform for studying SARS-CoV-2 pathogenicity and innate immune responses, and for evaluating the efficacy of antiviral drugs against SARS-CoV-2. We show that while SARS-CoV-2 continued to replicate during the course of infection of hPCLS, infectious virus production peaked within 2 days, and rapidly declined thereafter. Although most proinflammatory cytokines examined were induced by SARS-CoV-2 infection, the degree of induction and types of cytokines varied significantly among hPCLS from individual donors, reflecting the heterogeneity of human populations. In particular, two cytokines (IP-10 and IL-8) were highly and consistently induced, suggesting a role in the pathogenesis of COVID-19. Histopathological examination revealed focal cytopathic effects late in the infection. Transcriptomic and proteomic analyses identified molecular signatures and cellular pathways that are largely consistent with the progression of COVID-19 in patients. Furthermore, we show that homoharringtonine, a natural plant alkaloid derived from Cephalotoxus fortunei , not only inhibited virus replication but also production of pro-inflammatory cytokines, and ameliorated the histopathological changes of the lungs caused by SARS-CoV-2 infection, demonstrating the usefulness of the hPCLS platform for evaluating antiviral drugs. SIGNIFICANCE: Here we established an ex vivo human precision-cut lung slice platform for assessing SARS-CoV-2 infection, viral replication kinetics, innate immune response, disease progression, and antiviral drugs. Using this platform, we identified early induction of specific cytokines, especially IP-10 and IL-8, as potential predictors for severe COVID-19, and uncovered a hitherto unrecognized phenomenon that while infectious virus disappears at late times of infection, viral RNA persists and lung histopathology commences. This finding may have important clinical implications for both acute and post-acute sequelae of COVID-19. This platform recapitulates some of the characteristics of lung disease observed in severe COVID-19 patients and is therefore a useful platform for understanding mechanisms of SARS-CoV-2 pathogenesis and for evaluating the efficacy of antiviral drugs.

3.
Am J Respir Crit Care Med ; 206(9): 1081-1095, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35776514

RESUMEN

Rationale: MUC5AC (mucin 5AC, oligomeric gel-forming) and MUC5B (mucin 5B, oligomeric gel-forming) are the predominant secreted polymeric mucins in mammalian airways. They contribute differently to the pathogenesis of various muco-obstructive and interstitial lung diseases, and their genes are separately regulated, but whether they are packaged together or in separate secretory granules is not known. Objectives: To determine the packaging of MUC5AC and MUC5B within individual secretory granules in mouse and human airways under varying conditions of inflammation and along the proximal-distal axis. Methods: Lung tissue was obtained from mice stimulated to upregulate mucin production by the cytokines IL-1ß and IL-13 or by porcine pancreatic elastase. Human lung tissue was obtained from donated normal lungs, biopsy samples of transplanted lungs, and explanted lungs from subjects with chronic obstructive pulmonary disease. MUC5AC and MUC5B were labeled with antibodies from different animal species or, in mice only, by transgenic chimeric mucin-fluorescent proteins and imaged using widefield deconvolution or Airyscan fluorescence microscopy. Measurements and Main Results: In both mouse and human airways, most secretory granules contained both mucins interdigitating within the granules. Smaller numbers of granules contained MUC5B alone, and even fewer contained MUC5AC alone. Conclusions: MUC5AC and MUC5B are variably stored both in the same and in separate secretory granules of both mice and humans. The high fraction of granules containing both mucins under a variety of conditions makes it unlikely that their secretion can be differentially controlled as a therapeutic strategy. This work also advances knowledge of the packaging of mucins within secretory granules to understand mechanisms of epithelial stress in the pathogenesis of chronic lung diseases.


Asunto(s)
Mucina 5B , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Ratones , Animales , Porcinos , Mucina 5AC , Pulmón/metabolismo , Vesículas Secretoras/metabolismo , Mamíferos/metabolismo
5.
mSphere ; 6(4): e0044221, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34232075

RESUMEN

Coxiella burnetii is a highly infectious, intracellular, Gram-negative bacterial pathogen that causes human Q fever, an acute flu-like illness that can progress to chronic endocarditis. C. burnetii is transmitted to humans via aerosols and has long been considered a potential biological warfare agent. Although antibiotics, such as doxycycline, effectively treat acute Q fever, a recently identified antibiotic-resistant strain demonstrates the ability of C. burnetii to resist traditional antimicrobials, and chronic disease is extremely difficult to treat with current options. These findings highlight the need for new Q fever therapeutics, and repurposed drugs that target eukaryotic functions to prevent bacterial replication are of increasing interest in infectious disease. To identify this class of anti-C. burnetii therapeutics, we screened a library of 727 FDA-approved or late-stage clinical trial compounds using a human macrophage-like cell model of infection. Eighty-eight compounds inhibited bacterial replication, including known antibiotics, antipsychotic or antidepressant treatments, antihistamines, and several additional compounds used to treat a variety of conditions. The majority of identified anti-C. burnetii compounds target host neurotransmitter system components. Serotoninergic, dopaminergic, and adrenergic components are among the most highly represented targets and potentially regulate macrophage activation, cytokine production, and autophagy. Overall, our screen identified multiple host-directed compounds that can be pursued for potential use as anti-C. burnetii drugs. IMPORTANCE Coxiella burnetii causes the debilitating disease Q fever in humans. This infection is difficult to treat with current antibiotics and can progress to long-term, potentially fatal infection in immunocompromised individuals or when treatment is delayed. Here, we identified many new potential treatment options in the form of drugs that are either FDA approved or have been used in late-stage clinical trials and target human neurotransmitter systems. These compounds are poised for future characterization as nontraditional anti-C. burnetii therapies.


Asunto(s)
Antibacterianos/farmacología , Coxiella burnetii/efectos de los fármacos , Coxiella burnetii/crecimiento & desarrollo , Interacciones Huésped-Patógeno/efectos de los fármacos , Neurotransmisores/antagonistas & inhibidores , Preparaciones Farmacéuticas/análisis , Bibliotecas de Moléculas Pequeñas/farmacología , Coxiella burnetii/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Farmacología , Fiebre Q/tratamiento farmacológico , Fiebre Q/microbiología , Células THP-1
6.
JCI Insight ; 6(7)2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33661765

RESUMEN

ORM1-like 3 (ORMDL3) has strong genetic linkage to childhood onset asthma. To determine whether ORMDL3 selective expression in airway smooth muscle (ASM) influences ASM function, we used Cre-loxP techniques to generate transgenic mice (hORMDL3Myh11eGFP-cre), which express human ORMDL3 selectively in smooth muscle cells. In vitro studies of ASM cells isolated from the bronchi of hORMDL3Myh11eGFP-cre mice demonstrated that they developed hypertrophy (quantitated by FACS and image analysis), developed hyperplasia (assessed by BrdU incorporation), and expressed increased levels of tropomysin proteins TPM1 and TPM4. siRNA knockdown of TPM1 or TPM4 demonstrated their importance to ORMDL3-mediated ASM proliferation but not hypertrophy. In addition, ASM derived from hORMDL3Myh11eGFP-cre mice had increased contractility to histamine in vitro, which was associated with increased levels of intracellular Ca2+; increased cell surface membrane Orai1 Ca2+ channels, which mediate influx of Ca2+ into the cytoplasm; and increased expression of ASM contractile genes sarco/endoplasmic reticulum Ca2+ ATPase 2b and smooth muscle 22. In vivo studies of hORMDL3Myh11eGFP-cre mice demonstrated that they had a spontaneous increase in ASM and airway hyperreactivity (AHR). ORMDL3 expression in ASM thus induces changes in ASM (hypertrophy, hyperplasia, increased contractility), which may explain the contribution of ORMDL3 to the development of AHR in childhood onset asthma, which is highly linked to ORMDL3 on chromosome 17q12-21.


Asunto(s)
Proteínas de la Membrana/genética , Músculo Liso/patología , Tropomiosina/genética , Animales , Asma/genética , Asma/patología , Hiperreactividad Bronquial/etiología , Calcio/metabolismo , Proliferación Celular , Células Cultivadas , Histamina/farmacología , Humanos , Hiperplasia , Hipertrofia , Ratones Transgénicos , Contracción Muscular/efectos de los fármacos , Contracción Muscular/fisiología , Músculo Liso/fisiología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Tropomiosina/metabolismo
7.
Infect Immun ; 89(2)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33257531

RESUMEN

Yersinia pestis is a highly virulent pathogen and the causative agent of bubonic, septicemic, and pneumonic plague. Primary pneumonic plague caused by inhalation of respiratory droplets contaminated with Y. pestis is nearly 100% lethal within 4 to 7 days without antibiotic intervention. Pneumonic plague progresses in two phases, beginning with extensive bacterial replication in the lung with minimal host responsiveness, followed by the abrupt onset of a lethal proinflammatory response. The precise mechanisms by which Y. pestis is able to colonize the lung and survive two very distinct disease phases remain largely unknown. To date, a few bacterial virulence factors, including the Ysc type 3 secretion system, are known to contribute to the pathogenesis of primary pneumonic plague. The bacterial GTPase BipA has been shown to regulate expression of virulence factors in a number of Gram-negative bacteria, including Pseudomonas aeruginosa, Escherichia coli, and Salmonella enterica serovar Typhi. However, the role of BipA in Y. pestis has yet to be investigated. Here, we show that BipA is a Y. pestis virulence factor that promotes defense against early neutrophil-mediated bacterial killing in the lung. This work identifies a novel Y. pestis virulence factor and highlights the importance of early bacterial/neutrophil interactions in the lung during primary pneumonic plague.


Asunto(s)
Proteínas Bacterianas/fisiología , GTP Fosfohidrolasas/fisiología , Peste/inmunología , Peste/fisiopatología , Factores de Virulencia/fisiología , Yersinia pestis/inmunología , Yersinia pestis/patogenicidad , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Modelos Animales
8.
Proc Natl Acad Sci U S A ; 117(45): 28485-28495, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33097666

RESUMEN

The recent discovery of sensory (tastant and odorant) G protein-coupled receptors on the smooth muscle of human bronchi suggests unappreciated therapeutic targets in the management of obstructive lung diseases. Here we have characterized the effects of a wide range of volatile odorants on the contractile state of airway smooth muscle (ASM) and uncovered a complex mechanism of odorant-evoked signaling properties that regulate excitation-contraction (E-C) coupling in human ASM cells. Initial studies established multiple odorous molecules capable of increasing intracellular calcium ([Ca2+]i) in ASM cells, some of which were (paradoxically) associated with ASM relaxation. Subsequent studies showed a terpenoid molecule (nerol)-stimulated OR2W3 caused increases in [Ca2+]i and relaxation of ASM cells. Of note, OR2W3-evoked [Ca2+]i mobilization and ASM relaxation required Ca2+ flux through the store-operated calcium entry (SOCE) pathway and accompanied plasma membrane depolarization. This chemosensory odorant receptor response was not mediated by adenylyl cyclase (AC)/cyclic nucleotide-gated (CNG) channels or by protein kinase A (PKA) activity. Instead, ASM olfactory responses to the monoterpene nerol were predominated by the activity of Ca2+-activated chloride channels (TMEM16A), including the cystic fibrosis transmembrane conductance regulator (CFTR) expressed on endo(sarco)plasmic reticulum. These findings demonstrate compartmentalization of Ca2+ signals dictates the odorant receptor OR2W3-induced ASM relaxation and identify a previously unrecognized E-C coupling mechanism that could be exploited in the development of therapeutics to treat obstructive lung diseases.


Asunto(s)
Anoctamina-1/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Músculo Liso/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores Odorantes/metabolismo , Adenilil Ciclasas/metabolismo , Bronquios/metabolismo , Calcio/metabolismo , Células Cultivadas , Humanos , Pulmón/metabolismo , Contracción Muscular/fisiología , Relajación Muscular , Miocitos del Músculo Liso/metabolismo , Receptores Odorantes/genética
9.
Gastroenterology ; 159(5): 1778-1792.e13, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32712105

RESUMEN

BACKGROUND & AIMS: Eosinophilic esophagitis (EoE) is an antigen-mediated eosinophilic disease of the esophagus that involves fibroblast activation and progression to fibrostenosis. Cytokines produced by T-helper type 2 cells and transforming growth factor beta 1 (TGFß1) contribute to the development of EoE, but other cytokines involved in pathogenesis are unknown. We investigate the effects of tumor necrosis factor superfamily member 14 (TNFSF14, also called LIGHT) on fibroblasts in EoE. METHODS: We analyzed publicly available esophageal CD3+ T-cell single-cell sequencing data for expression of LIGHT. Esophageal tissues were obtained from pediatric patients with EoE or control individuals and analyzed by immunostaining. Human primary esophageal fibroblasts were isolated from esophageal biopsy samples of healthy donors or patients with active EoE. Fibroblasts were cultured; incubated with TGFß1 and/or LIGHT; and analyzed by RNA sequencing, flow cytometry, immunoblots, immunofluorescence, or reverse transcription polymerase chain reaction. Eosinophils were purified from peripheral blood of healthy donors, incubated with interleukin 5, cocultured with fibroblasts, and analyzed by immunohistochemistry. RESULTS: LIGHT was up-regulated in the esophageal tissues from patients with EoE, compared with control individuals, and expressed by several T-cell populations, including T-helper type 2 cells. TNF receptor superfamily member 14 (TNFRSF14, also called HVEM) and lymphotoxin beta receptor are receptors for LIGHT that were expressed by fibroblasts from healthy donors or patients with active EoE. Stimulation of esophageal fibroblasts with LIGHT induced inflammatory gene transcription, whereas stimulation with TGFß1 induced transcription of genes associated with a myofibroblast phenotype. Stimulation of fibroblasts with TGFß1 increased expression of HVEM; subsequent stimulation with LIGHT resulted in their differentiation into cells that express markers of myofibroblasts and inflammatory chemokines and cytokines. Eosinophils tethered to esophageal fibroblasts after LIGHT stimulation via intercellular adhesion molecule-1. CONCLUSIONS: T cells in esophageal tissues from patients with EoE express increased levels of LIGHT compared with control individuals, which induces differentiation of fibroblasts into cells with inflammatory characteristics. TGFß1 increases fibroblast expression of HVEM, a receptor for LIGHT. LIGHT mediates interactions between esophageal fibroblasts and eosinophils via ICAM1. This pathway might be targeted for the treatment of EoE.


Asunto(s)
Diferenciación Celular , Esofagitis Eosinofílica/metabolismo , Esófago/metabolismo , Fibroblastos/metabolismo , Mediadores de Inflamación/metabolismo , Comunicación Paracrina , Linfocitos T/metabolismo , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/metabolismo , Adolescente , Estudios de Casos y Controles , Células Cultivadas , Niño , Preescolar , Esofagitis Eosinofílica/inmunología , Esofagitis Eosinofílica/patología , Esófago/inmunología , Esófago/patología , Femenino , Fibroblastos/inmunología , Fibroblastos/patología , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Masculino , Fenotipo , Miembro 14 de Receptores del Factor de Necrosis Tumoral/metabolismo , Transducción de Señal , Linfocitos T/inmunología , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/genética , Regulación hacia Arriba
10.
Am J Physiol Lung Cell Mol Physiol ; 318(4): L592-L605, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32022592

RESUMEN

Respiratory disease is a leading cause of mortality in patients with osteogenesis imperfecta (OI), a connective tissue disease that causes severely reduced bone mass and is most commonly caused by dominant mutations in type I collagen genes. Previous studies proposed that impaired respiratory function in OI patients was secondary to skeletal deformities; however, recent evidence suggests the existence of a primary lung defect. Here, we analyzed the lung phenotype of Crtap knockout (KO) mice, a mouse model of recessive OI. While we confirm changes in the lung parenchyma that are reminiscent of emphysema, we show that CrtapKO lung fibroblasts synthesize type I collagen with altered posttranslation modifications consistent with those observed in bone and skin. Unrestrained whole body plethysmography showed a significant decrease in expiratory time, resulting in an increased ratio of inspiratory time over expiratory time and a concomitant increase of the inspiratory duty cycle in CrtapKO compared with WT mice. Closed-chest measurements using the forced oscillation technique showed increased respiratory system elastance, decreased respiratory system compliance, and increased tissue damping and elasticity in CrtapKO mice compared with WT. Pressure-volume curves showed significant differences in lung volumes and in the shape of the curves between CrtapKO mice and WT mice, with and without adjustment for body weight. This is the first evidence that collagen defects in OI cause primary changes in lung parenchyma and several respiratory parameters and thus negatively impact lung function.


Asunto(s)
Colágeno Tipo I/genética , Proteínas de la Matriz Extracelular/genética , Chaperonas Moleculares/genética , Osteogénesis Imperfecta/genética , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación/genética , Procesamiento Proteico-Postraduccional/genética
12.
Am J Respir Cell Mol Biol ; 62(3): 310-318, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31533004

RESUMEN

Rhinovirus (RV) exposure evokes exacerbations of asthma that markedly impact morbidity and mortality worldwide. The mechanisms by which RV induces airway hyperresponsiveness (AHR) or by which specific RV serotypes differentially evoke AHR remain unknown. We posit that RV infection evokes AHR and inflammatory mediator release, which correlate with degrees of RV infection. Furthermore, we posit that rhinovirus C-induced AHR requires paracrine or autocrine mediator release from epithelium that modulates agonist-induced calcium mobilization in human airway smooth muscle. In these studies, we used an ex vivo model to measure bronchoconstriction and mediator release from infected airways in human precision cut lung slices to understand how RV exposure alters airway constriction. We found that rhinovirus C15 (RV-C15) infection augmented carbachol-induced airway narrowing and significantly increased release of IP-10 (IFN-γ-induced protein 10) and MIP-1ß (macrophage inflammatory protein-1ß) but not IL-6. RV-C15 infection of human airway epithelial cells augmented agonist-induced intracellular calcium flux and phosphorylation of myosin light chain in co-cultured human airway smooth muscle to carbachol, but not after histamine stimulation. Our data suggest that RV-C15-induced structural cell inflammatory responses are associated with viral load but that inflammatory responses and alterations in agonist-mediated constriction of human small airways are uncoupled from viral load of the tissue.


Asunto(s)
Señalización del Calcio , Infecciones por Enterovirus/fisiopatología , Enterovirus/fisiología , Músculo Liso/virología , Hipersensibilidad Respiratoria/etiología , Asma/virología , Carbacol/farmacología , Células Cultivadas , Quimiocina CXCL10/metabolismo , Enterovirus/genética , Enterovirus/aislamiento & purificación , Infecciones por Enterovirus/virología , Histamina/farmacología , Humanos , Mediadores de Inflamación/metabolismo , Contracción Muscular/efectos de los fármacos , Músculo Liso/fisiopatología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Cadenas Ligeras de Miosina/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , ARN Viral/análisis , Hipersensibilidad Respiratoria/virología , Carga Viral
13.
Infect Immun ; 87(8)2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31085709

RESUMEN

Pneumonic plague is the deadliest form of disease caused by Yersinia pestis Key to the progression of infection is the activity of the plasminogen activator protease Pla. Deletion of Pla results in a decreased Y. pestis bacterial burden in the lung and failure to progress into the lethal proinflammatory phase of disease. While a number of putative functions have been attributed to Pla, its precise role in the pathogenesis of pneumonic plague is yet to be defined. Here, we show that Pla facilitates type 3 secretion into primary alveolar macrophages but not into the commonly used THP-1 cell line. We also establish human precision-cut lung slices as a platform for modeling early host/pathogen interactions during pneumonic plague and solidify the role of Pla in promoting optimal type 3 secretion using primary human tissue with relevant host cell heterogeneity. These results position Pla as a key player in the early host/pathogen interactions that define pneumonic plague and showcase the utility of human precision-cut lung slices as a platform to evaluate pulmonary infection by bacterial pathogens.


Asunto(s)
Interacciones Huésped-Patógeno , Pulmón/microbiología , Peste/etiología , Activadores Plasminogénicos/fisiología , Yersinia pestis/metabolismo , Animales , Adhesión Bacteriana , Línea Celular , Citocinas/metabolismo , Femenino , Humanos , Macrófagos Alveolares/microbiología , Ratones , Ratones Endogámicos C57BL
14.
Sci Rep ; 9(1): 6206, 2019 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-30996235

RESUMEN

There is an increasing prevalence of esophageal diseases but intact human tissue platforms to study esophageal function, disease mechanisms, and the interactions between cell types in situ are lacking. To address this, we utilized full thickness human donor esophagi to create and validate the ex vivo function of mucosa and smooth muscle (n = 25). Explanted tissue was tested for contractile responses to carbachol and histamine. We then treated ex vivo human esophageal mucosa with a cytokine cocktail to closely mimic the Th2 and inflammatory milieu of eosinophilic esophagitis (EoE) and assessed alterations in smooth muscle and extracellular matrix function and stiffening. We found that full thickness human esophagus as well as the individual layers of circular and longitudinal muscularis propria developed tension in response to carbachol ex vivo and that mucosa demonstrated squamous cell differentiation. Treatment of mucosa with Th2 and fibrotic cytokines recapitulated the majority of the clinical Eosinophilic Esophagitis Diagnostic Profile (EDP) on fluidic transcriptional microarray. Transforming growth factor-beta-1 (TGFß1) increased gene expression of fibronectin, smooth muscle actin, and phospholamban (p < 0.001). The EoE cocktail also increased stiffness and decreased mucosal compliance, akin to the functional alterations in EoE (p = 0.001). This work establishes a new, transcriptionally intact and physiologically functional human platform to model esophageal tissue responses in EoE.


Asunto(s)
Citocinas/farmacología , Esofagitis Eosinofílica/patología , Mucosa Esofágica/efectos de los fármacos , Modelos Biológicos , Diferenciación Celular , Esofagitis Eosinofílica/diagnóstico , Esofagitis Eosinofílica/inmunología , Células Epiteliales , Mucosa Esofágica/patología , Matriz Extracelular/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Humanos , Músculo Liso/efectos de los fármacos , Músculo Liso/fisiología , Análisis de Matrices Tisulares , Factor de Crecimiento Transformador beta/farmacología
15.
Infect Immun ; 87(7)2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31010814

RESUMEN

Pulmonary pathogens encounter numerous insults, including phagocytic cells designed to degrade bacteria, while establishing infection in the human lung. Staphylococcus aureus is a versatile, opportunistic pathogen that can cause severe pneumonia, and methicillin-resistant isolates are of particular concern. Recent reports present conflicting data regarding the ability of S. aureus to survive and replicate within macrophages. However, due to use of multiple strains and macrophage sources, making comparisons between reports remains difficult. Here, we established a disease-relevant platform to study innate interactions between S. aureus and human lungs. Human precision-cut lung slices (hPCLS) were subjected to infection by S. aureus LAC (methicillin-resistant) or UAMS-1 (methicillin-sensitive) isolates. Additionally, primary human alveolar macrophages (hAMs) were infected with S. aureus, and antibacterial activity was assessed. Although both S. aureus isolates survived within hAM phagosomes, neither strain replicated efficiently in these cells. S. aureus was prevalent within the epithelial and interstitial regions of hPCLS, with limited numbers present in a subset of hAMs, suggesting that the pathogen may not target phagocytic cells for intracellular growth during natural pulmonary infection. S. aureus-infected hAMs mounted a robust inflammatory response that reflected natural human disease. S. aureus LAC was significantly more cytotoxic to hAMs than UAMS-1, potentially due to isolate-specific virulence factors. The bicomponent toxin Panton-Valentine leukocidin was not produced during intracellular infection, while alpha-hemolysin was produced but was not hemolytic, suggesting that hAMs alter toxin activity. Overall, this study defined a new disease-relevant infection platform to study S. aureus interaction with human lungs and to define virulence factors that incapacitate pulmonary cells.


Asunto(s)
Toxinas Bacterianas/metabolismo , Exotoxinas/metabolismo , Leucocidinas/metabolismo , Macrófagos Alveolares/microbiología , Fagosomas/microbiología , Infecciones Estafilocócicas , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidad , Factores de Virulencia/metabolismo , Antibacterianos/farmacología , Humanos , Pulmón/metabolismo , Pulmón/microbiología , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/microbiología
16.
Infect Immun ; 87(5)2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30833339

RESUMEN

Human Q fever is caused by the intracellular bacterial pathogen Coxiella burnetii Q fever presents with acute flu-like and pulmonary symptoms or can progress to chronic, severe endocarditis. After human inhalation, C. burnetii is engulfed by alveolar macrophages and transits through the phagolysosomal maturation pathway, resisting the acidic pH of lysosomes to form a parasitophorous vacuole (PV) in which to replicate. Previous studies showed that C. burnetii replicates efficiently in primary human alveolar macrophages (hAMs) in ex vivo human lung tissue. Although C. burnetii replicates in most cell types in vitro, the pathogen does not grow in non-hAM cells of human lung tissue. In this study, we investigated the interaction between C. burnetii and other pulmonary cell types apart from the lung environment. C. burnetii formed a prototypical PV and replicated efficiently in human pulmonary fibroblasts and in airway, but not alveolar, epithelial cells. Atypical PV expansion in alveolar epithelial cells was attributed in part to defective recruitment of autophagy-related proteins. Further assessment of the C. burnetii growth niche showed that macrophages mounted a robust interleukin 8 (IL-8), neutrophil-attracting response to C. burnetii and ultimately shifted to an M2-polarized phenotype characteristic of anti-inflammatory macrophages. Considering our findings together, this study provides further clarity on the unique C. burnetii-lung dynamic during early stages of human acute Q fever.


Asunto(s)
Coxiella burnetii/patogenicidad , Interacciones Huésped-Patógeno/inmunología , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/patología , Fiebre Q/inmunología , Fiebre Q/fisiopatología , Humanos , Macrófagos Alveolares/microbiología , Fiebre Q/microbiología
17.
Xenobiotica ; 49(9): 1106-1115, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30328361

RESUMEN

Epidemiologic studies have demonstrated an association between acetaminophen (APAP) use and the development of asthma symptoms. However, few studies have examined relationships between APAP-induced signaling pathways associated with the development of asthma symptoms. We tested the hypothesis that acute APAP exposure causes airway hyper-responsiveness (AHR) in human airways. Precision cut lung slice (PCLS) airways from humans and mice were used to determine the effects of APAP on airway bronchoconstriction and bronchodilation and to assess APAP metabolism in lungs. APAP did not promote AHR in normal or asthmatic human airways ex vivo. Rather, high concentrations mildly bronchodilated airways pre-constricted with carbachol (CCh), histamine (His), or immunoglobulin E (IgE) cross-linking. Further, the addition of APAP prior to bronchoconstrictors protected the airways from constriction. Similarly, in vivo treatment of mice with APAP (200 mg/kg IP) resulted in reduced bronchoconstrictor responses in PCLS airways ex vivo. Finally, in both mouse and human PCLS airways, exposure to APAP generated only low amounts of APAP-protein adducts, indicating minimal drug metabolic activity in the tissues. These findings indicate that acute exposure to APAP does not initiate AHR, that high-dose APAP is protective against bronchoconstriction, and that APAP is a mild bronchodilator.


Asunto(s)
Acetaminofén/farmacología , Broncoconstricción/efectos de los fármacos , Broncodilatadores/farmacología , Pulmón/efectos de los fármacos , Acetaminofén/administración & dosificación , Acetaminofén/efectos adversos , Albuterol/farmacología , Animales , Asma/fisiopatología , Broncodilatadores/efectos adversos , Carbacol/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Relación Dosis-Respuesta a Droga , Humanos , Pulmón/fisiología , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos , Persona de Mediana Edad , Técnicas de Cultivo de Órganos , Estrés Oxidativo/efectos de los fármacos , Hipersensibilidad Respiratoria/inducido químicamente
18.
J Pediatr Gastroenterol Nutr ; 68(2): 225-231, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30211842

RESUMEN

BACKGROUND: Eosinophilic esophagitis (EoE) is a chronic TH2-assocated inflammatory condition accompanied by substantial impairments in epithelial barrier function and increased numbers of interleukin 9 (IL-9) expressing inflammatory cells. While IL-9 is known to affect barrier function in the intestine, the functional effects of IL-9 on the esophagus are unclear. Herein we aimed to understand the expression of the IL-9 receptor and effects of IL-9 on the epithelium in EoE. METHODS: We used esophageal biopsies from pediatric EoE patients with active and inactive disease to analyze the expression of the IL-9 receptor, the adherens junction protein E-cadherin and the tight junction protein claudin-1. We treated primary human esophageal epithelial cells with IL-9 to understand its effects on E-cadherin expression and function. RESULTS: Active EoE subjects had increased epithelial expression of IL-9 receptor mRNA and protein (P < 0.05) and decreased membrane bound E-cadherin (P < 0.01) and claudin-1 (P < 0.05) expression. IL-9 receptor expression and mislocalized claudin-1 positively correlated and while membrane bound E-cadherin expression negatively correlated with the degree of histologic epithelial remodeling (P < 0.05). IL-9 decreased epithelial resistance in stratified primary human esophageal epithelial cells (P < 0.01) and membrane bound E-cadherin in epithelial cell monolayers (P < 0.01). CONCLUSIONS: These data suggest that IL-9, its receptor, and its effects on E-cadherin may be important mechanisms for epithelial barrier disruption in EoE.


Asunto(s)
Antígenos CD/metabolismo , Cadherinas/metabolismo , Esofagitis Eosinofílica/metabolismo , Esófago/metabolismo , Interleucina-9/metabolismo , Receptores de Interleucina-9/metabolismo , Biopsia , Niño , Esofagitis Eosinofílica/patología , Células Epiteliales/metabolismo , Epitelio/metabolismo , Epitelio/patología , Esófago/patología , Femenino , Humanos , Masculino
19.
Respir Res ; 19(1): 208, 2018 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-30373568

RESUMEN

Rhinovirus (RV) exposure has been implicated in childhood development of wheeze evoking asthma and exacerbations of underlying airways disease. Studies such as the Copenhagen Prospective Studies on Asthma in Childhood (COPSAC) and Childhood Origins of ASThma (COAST) have identified RV as a pathogen inducing severe respiratory disease. RVs also modulate airway hyperresponsiveness (AHR), a key characteristic of such diseases. Although potential factors underlying mechanisms by which RV induces AHR have been postulated, the precise mechanisms of AHR following RV exposure remain elusive.A challenge to RV-related research stems from inadequate models for study. While human models raise ethical concerns and are relatively difficult in terms of subject recruitment, murine models are limited by susceptibility of infection to the relatively uncommon minor group (RV-B) serotypes, strains that are generally associated with infrequent clinical respiratory virus infections. Although a transgenic mouse strain that has been developed has enhanced susceptibility for infection with the common major group (RV-A) serotypes, few studies have focused on RV in the context of allergic airways disease rather than understanding RV-induced AHR. Recently, the receptor for the virulent RV-C CDHR3, was identified, but a dearth of studies have examined RV-C-induced effects in humans.Currently, the mechanisms by which RV infections modulate airway smooth muscle (ASM) shortening or excitation-contraction coupling remain elusive. Further, only one study has investigated the effects of RV on bronchodilatory mechanisms, with only speculation as to mechanisms underlying RV-mediated modulation of bronchoconstriction.


Asunto(s)
Hipersensibilidad Respiratoria/fisiopatología , Hipersensibilidad Respiratoria/virología , Rhinovirus/aislamiento & purificación , Rhinovirus/fisiología , Contaminantes Atmosféricos/efectos adversos , Animales , Asma/epidemiología , Asma/fisiopatología , Asma/virología , Técnicas de Cocultivo , Humanos , Hipersensibilidad Respiratoria/epidemiología
20.
Infect Immun ; 86(5)2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29483292

RESUMEN

Coxiella burnetii is the causative agent of human Q fever, a debilitating flu-like illness that can progress to chronic disease presenting as endocarditis. Following inhalation, C. burnetii is phagocytosed by alveolar macrophages and generates a lysosome-like replication compartment termed the parasitophorous vacuole (PV). A type IV secretion system (T4SS) is required for PV generation and is one of the pathogen's few known virulence factors. We previously showed that C. burnetii actively recruits autophagosomes to the PV using the T4SS but does not alter macroautophagy. In the current study, we confirmed that the cargo receptor p62/sequestosome 1 (SQSTM-1) localizes near the PV in primary human alveolar macrophages infected with virulent C. burnetii p62 and LC3 typically interact to select cargo for autophagy-mediated degradation, resulting in p62 degradation and LC3 recycling. However, in C. burnetii-infected macrophages, p62 was not degraded when cells were starved, suggesting that the pathogen stabilizes the protein. In addition, phosphorylated p62 levels increased, indicative of activation, during infection. Small interfering RNA experiments indicated that p62 is not absolutely required for intracellular growth, suggesting that the protein serves a signaling role during infection. Indeed, the Nrf2-Keap1 cytoprotective pathway was activated during infection, as evidenced by sustained maintenance of Nrf2 levels and translocation of the protein to the nucleus in C. burnetii-infected cells. Collectively, our studies identify a new p62-regulated host signaling pathway exploited by C. burnetii during intramacrophage growth.


Asunto(s)
Coxiella burnetii/patogenicidad , Interacciones Huésped-Patógeno/fisiología , Macrófagos/metabolismo , Macrófagos/patología , Factor 2 Relacionado con NF-E2/metabolismo , Proteína Sequestosoma-1/metabolismo , Transducción de Señal/fisiología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...