Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Environ Int ; 187: 108683, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38735073

RESUMEN

Substantial evidence suggests that all types of water, such as drinking water, wastewater, surface water, and groundwater, can be potential sources of Helicobacter pylori (H. pylori) infection. Thus, it is critical to thoroughly investigate all possible preconditioning methods to enhance the recovery of H. pylori, improve the reproducibility of subsequent detection, and optimize the suitability for various water types and different detection purposes. In this study, we proposed and evaluated five distinct preconditioning methods for treating water samples collected from multiple urban water environments, aiming to maximize the quantitative qPCR readouts and achieve effective selective cultivation. According to the experimental results, when using the qPCR technique to examine WWTP influent, effluent, septic tank, and wetland water samples, the significance of having a preliminary cleaning step becomes more evident as it can profoundly influence qPCR detection results. In contrast, the simple, straightforward membrane filtration method could perform best when isolating and culturing H. pylori from all water samples. Upon examining the cultivation and qPCR results obtained from groundwater samples, the presence of infectious H. pylori (potentially other pathogens) in aquifers must represent a pressing environmental emergency demanding immediate attention. Furthermore, we believe groundwater can be used as a medium to reflect the H. pylori prevalence in a highly populated community due to its straightforward analytical matrix, consistent detection performance, and minimal interferences from human activities, temperature, precipitation, and other environmental fluctuations.


Asunto(s)
Agua Subterránea , Helicobacter pylori , Microbiología del Agua , Helicobacter pylori/aislamiento & purificación , Agua Subterránea/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Aguas Residuales/microbiología , Ciudades
2.
bioRxiv ; 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37398342

RESUMEN

Mechanistic modeling of cancers such as Medullary Thyroid Carcinoma (MTC) to emulate patient-specific phenotypes is challenging. The discovery of potential diagnostic markers and druggable targets in MTC urgently requires clinically relevant animal models. Here we established orthotopic mouse models of MTC driven by aberrantly active Cdk5 using cell-specific promoters. Each of the two models elicits distinct growth differences that recapitulate the less or more aggressive forms of human tumors. The comparative mutational and transcriptomic landscape of tumors revealed significant alterations in mitotic cell cycle processes coupled with the slow-growing tumor phenotype. Conversely, perturbation in metabolic pathways emerged as critical for aggressive tumor growth. Moreover, an overlapping mutational profile was identified between mouse and human tumors. Gene prioritization revealed putative downstream effectors of Cdk5 which may contribute to the slow and aggressive growth in the mouse MTC models. In addition, Cdk5/p25 phosphorylation sites identified as biomarkers for Cdk5-driven neuroendocrine tumors (NETs) were detected in both slow and rapid onset models and were also histologically present in human MTC. Thus, this study directly relates mouse and human MTC models and uncovers vulnerable pathways potentially responsible for differential tumor growth rates. Functional validation of our findings may lead to better prediction of patient-specific personalized combinational therapies.

3.
Water Res ; 243: 120383, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37506635

RESUMEN

Developing anti-biofouling and anti-biofilm techniques is of great importance for protecting water-contact surfaces. In this study, we developed a novel double-layer system consisting of a bottom immobilized TiO2 nanoflower arrays (TNFs) unit and an upper superhydrophobic (SHB) coating along with the assistance of nanobubbles (NBs), which can significantly elevate the interfacial oxygen level by establishing the long-range hydrophobic force between NBs and SHB and effectively maximize the photocatalytic reaction brought by the bottom TNFs. The developed NBs-SHB/TNFs system demonstrated the highest bulk chemical oxygen demand (COD) reduction efficiency at approximately 80% and achieved significant E. coli and Chlorella sp. inhibition efficiencies of 5.38 and 1.99 logs. Meanwhile, the system showed a sevenfold higher resistance to biofilm formation when testing in a wastewater matrix using a wildly collected biofilm seeding solution. These findings provide insights for implementing nanobubble-integrated techniques for submerged surface protection.


Asunto(s)
Incrustaciones Biológicas , Chlorella , Escherichia coli , Incrustaciones Biológicas/prevención & control , Biopelículas , Interacciones Hidrofóbicas e Hidrofílicas
4.
Front Neurosci ; 15: 669410, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34121997

RESUMEN

The neurobiological mechanisms that mediate psychiatric comorbidities associated with metabolic disorders such as obesity, metabolic syndrome and diabetes remain obscure. High fructose corn syrup (HFCS) is widely used in beverages and is often included in food products with moderate or high fat content that have been linked to many serious health issues including diabetes and obesity. However, the impact of such foods on the brain has not been fully characterized. Here, we evaluated the effects of long-term consumption of a HFCS-Moderate Fat diet (HFCS-MFD) on behavior, neuronal signal transduction, gut microbiota, and serum metabolomic profile in mice to better understand how its consumption and resulting obesity and metabolic alterations relate to behavioral dysfunction. Mice fed HFCS-MFD for 16 weeks displayed enhanced anxiogenesis, increased behavioral despair, and impaired social interactions. Furthermore, the HFCS-MFD induced gut microbiota dysbiosis and lowered serum levels of serotonin and its tryptophan-based precursors. Importantly, the HFCS-MFD altered neuronal signaling in the ventral striatum including reduced inhibitory phosphorylation of glycogen synthase kinase 3ß (GSK3ß), increased expression of ΔFosB, increased Cdk5-dependent phosphorylation of DARPP-32, and reduced PKA-dependent phosphorylation of the GluR1 subunit of the AMPA receptor. These findings suggest that HFCS-MFD-induced changes in the gut microbiota and neuroactive metabolites may contribute to maladaptive alterations in ventral striatal function that underlie neurobehavioral impairment. While future studies are essential to further evaluate the interplay between these factors in obesity and metabolic syndrome-associated behavioral comorbidities, these data underscore the important role of peripheral-CNS interactions in diet-induced behavioral and brain function. This study also highlights the clinical need to address neurobehavioral comorbidities associated with obesity and metabolic syndrome.

5.
Food Chem ; 352: 129327, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33690077

RESUMEN

This paper describes a voltammetric method and data analysis program developed for the detection of arsenic(III) in commercial apple juice. Arsenic(III) was detected using square wave stripping voltammetry with gold nanoparticle modified screen printed electrodes. The only sample pretreatment performed was the addition of a 100 mM phosphate buffer with a pH of 7. To compensate for interference from high ascorbic acid concentrations, a data analysis program was developed in MATLAB to fit a non-linear baseline, allowing for accurate peak height measurement. With this data analysis program, the developed methodology had a sensitivity of 0.1007 µA (µg L-1)-1 and a limit of detection of 16.73 µg L-1. A comparison between the voltammetric method and graphite furnace atomic absorption spectroscopy showed no bias in the voltammetric results and a good correlation between the two sets of predicted concentrations, with an R2 of 0.939.


Asunto(s)
Arsénico/análisis , Carbono/química , Electroquímica/instrumentación , Jugos de Frutas y Vegetales/análisis , Oro/química , Malus/química , Nanopartículas del Metal/química , Electrodos , Análisis de los Alimentos/instrumentación , Impresión , Factores de Tiempo
6.
Exp Brain Res ; 239(3): 881-890, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33420799

RESUMEN

Loss of dendritic spines and decline of cognitive function are hallmarks of patients with Alzheimer's disease (AD). Previous studies have shown that AD pathophysiology involves increased expression of a central nervous system-enriched protein tyrosine phosphatase called STEP (STriatal-Enriched protein tyrosine Phosphatase). STEP opposes the development of synaptic strengthening by dephosphorylating substrates, including GluN2B, Pyk2, and ERK1/2. Genetic reduction of STEP as well as pharmacological inhibition of STEP improve cognitive function and hippocampal memory in the 3×Tg-AD mouse model. Here, we show that the improved cognitive function is accompanied by an increase in synaptic connectivity in cell cultures as well as in the triple transgenic AD mouse model, further highlighting the potential of STEP inhibitors as a therapeutic agent.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Animales , Modelos Animales de Enfermedad , Hipocampo , Memoria , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
7.
Behav Brain Res ; 391: 112713, 2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32461127

RESUMEN

Autism spectrum disorders (ASDs) are highly prevalent childhood illnesses characterized by impairments in communication, social behavior, and repetitive behaviors. Studies have found aberrant synaptic plasticity and neuronal connectivity during the early stages of brain development and have suggested that these contribute to an increased risk for ASD. STEP is a protein tyrosine phosphatase that regulates synaptic plasticity and is implicated in several cognitive disorders. Here we test the hypothesis that STEP may contribute to some of the aberrant behaviors present in the VPA-induced mouse model of ASD. In utero VPA exposure of pregnant dams results in autistic-like behavior in the pups, which is associated with a significant increase in the STEP expression in the prefrontal cortex. The elevated STEP protein levels are correlated with increased dephosphorylation of STEP substrates GluN2B, Pyk2 and ERK, suggesting upregulated STEP activity. Moreover, pharmacological inhibition of STEP rescues the sociability, repetitive and abnormal anxiety phenotypes commonly associated with ASD. These data suggest that STEP may play a role in the VPA model of ASD and STEP inhibition may have a potential therapeutic benefit in this model.


Asunto(s)
Trastorno del Espectro Autista/fisiopatología , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Animales , Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno Autístico/tratamiento farmacológico , Conducta Animal , Modelos Animales de Enfermedad , Conducta Exploratoria/fisiología , Femenino , Inhibición Psicológica , Masculino , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/fisiología , Corteza Prefrontal , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Tirosina Fosfatasas/fisiología , Proteínas Tirosina Fosfatasas no Receptoras/fisiología , Conducta Social , Conducta Estereotipada/fisiología , Ácido Valproico/efectos adversos
8.
Anal Bioanal Chem ; 412(17): 4113-4125, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32296905

RESUMEN

The present work reports a newly developed square wave anodic stripping voltammetry (SWASV) methodology using novel gold nanostar-modified screen-printed carbon electrodes (AuNS/SPCE) and modified Britton-Robinson buffer (mBRB) for simultaneous detection of trace cadmium(II), arsenic(III), and selenium(IV). During individual and simultaneous detection, Cd2+, As3+, and Se4+ exhibited well-separated SWASV peaks at approximately - 0.48, - 0.09, and 0.65 V, respectively (versus Ag/AgCl reference electrode), which enabled a highly selective detection of the three analytes. Electrochemical impedance spectrum tests showed a significant decrease in charge transfer resistance with the AuNS/SPCE (0.8 kΩ) compared with bare SPCE (2.4 kΩ). Cyclic voltammetry experiments showed a significant increase in electroactive surface area with electrode modification. The low charge transfer resistance and high electroactive surface area contributed to the high sensitivity for Cd2+ (0.0767 µA (0.225 µg L-1)-1), As3+ (0.2213 µA (µg L-1)-1), and Se4+ (µA (µg L-1)-1). The three analytes had linear stripping responses over the concentration range of 0 to 100 µg L-1, with the obtained LoD for Cd2+, As3+, and Se4+ of 1.6, 0.8, and 1.6 µg L-1, respectively. In comparison with individual detection, the simultaneous detection of As3+ and Se4+ showed peak height reductions of 40.8% and 42.7%, respectively. This result was associated with the possible formation of electrochemically inactive arsenic triselenide (As2Se3) during the preconcentration step. Surface water analysis resulted in average percent recoveries of 109% for Cd2+, 93% for As3+, and 92% for Se4+, indicating the proposed method is accurate and reliable for the simultaneous detection of Cd2+, As3+, and Se4+ in real water samples. Graphical abstract.

9.
Anal Chim Acta ; 1107: 63-73, 2020 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-32200903

RESUMEN

One of the challenges preventing rapid, onsite voltammetric detection of arsenic(III) is the overlapping oxidation peak of copper(II). This paper describes a novel methodology for the voltammetric detection of trace levels of arsenic(III) in the presence of high copper(II) concentrations (up to the action level of 1.3 mg L-1 set by the US EPA for drinking water). Square wave stripping voltammetry tests were performed using disposable carbon screen printed electrodes modified with gold nanostars on samples buffered with Britton-Robinson buffer. The optimized parameters for accurate codetection of arsenic(III) and copper(II) were a buffer pH of 9.5, a loading of gold nanostars of 2.39*10-5 nmol per electrode, a deposition voltage of -0.8 V, and a deposition time of 180 s. Based on calibration testing, the limits of detection for arsenic(III) and copper(II) were determined to be 2.9 µg L-1 and 42.5 µg L-1, respectively. Furthermore, the linear ranges for arsenic and copper were 0-100 µg L-1 and 0-250 µg L-1 with sensitivities of 0.101 µA (µg L-1)-1 and 0.121 µA (µg L-1)-1, respectively. Interference testing was performed with several common ionic species, sodium bicarbonate, sodium chloride, tannic acid, iron(iii) chloride, magnesium chloride, calcium nitrate, and sodium sulfate, with only sodium bicarbonate significantly affecting the response. Validation testing in real-world samples was performed by comparison with graphite furnace atomic absorption spectroscopy. The validation testing demonstrated good accuracy and precision, expressed as percent recovery and relative standard deviation (RSD), respectively, in river water and tap water, with mean percent recoveries of 87.7% (RSD = 4.20%) and 83.2% (RSD = 10.02%), respectively.

10.
Mikrochim Acta ; 186(11): 734, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31673847

RESUMEN

This paper presents an electrochemical sensor for Cr(VI) (chromate ion) in water. A disposable screen-printed electrode was modified with gold nanostars (AuNSs) that were synthesized by Good's buffer method. Linear sweep voltammetry (LSV) was employed for the detection of Cr(VI) in 0.1 M sulfuric acid solution. The AuNSs are shown to provide higher current response to Cr(VI) than spherically shaped gold nanoparticles. The sensor gives the strongest response at a scan rate of 0.05 V (vs Ag/AgCl) and exhibits minimal interference from other electroactive species. The linear range extends from 10 to 75,000 ppb, and the limit of detection is 3.5 ppb. This is well below the provisional guideline value given by the World Health Organization. Excellent recoveries (ranging between 95 and 97%) were found when analyzing contaminated ground water samples obtained from a site situated in Wellesley, MA. Graphical abstract Schematic presentation of preparation of gold nanostars (AuNS) on carbon paste screen printed electrode (CPSPE) by drop casting and electrochemical detection of chromium (VI) using linear sweep voltammetry (LSV).

11.
Mol Neurobiol ; 55(4): 3096-3111, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28466270

RESUMEN

NMDA receptor signaling is critical for the development of synaptic plasticity, learning, and memory, and dysregulation of NMDAR signaling is implicated in a number of neurological disorders including schizophrenia (SZ). Previous work has demonstrated that the STriatal-Enriched protein tyrosine Phosphatase 61 kDa (STEP61) is elevated in human SZ postmortem cortical samples and after administration of psychotomimetics to cultures or mice. Here, we report that activation of synaptic NMDAR by bicuculline or D-serine results in the ubiquitination and proteasomal degradation of STEP61, and increased surface localization of GluN1/GluN2B receptors. Moreover, bicuculline or D-serine treatments rescue the motor and cognitive deficits in MK-801-treated mice and reduce STEP61 in mouse frontal cortex. These results suggest that STEP61 may contribute to the therapeutic effects of D-serine.


Asunto(s)
Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteolisis , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo , Ubiquitinación , Animales , Bicuculina/farmacología , Células Cultivadas , Homólogo 4 de la Proteína Discs Large/metabolismo , Lipoilación , Masculino , Ratones Endogámicos C57BL , Fosforilación/efectos de los fármacos , Fosfotirosina/metabolismo , Proteolisis/efectos de los fármacos , Ratas , Especificidad por Sustrato/efectos de los fármacos , Sinapsis/efectos de los fármacos , Ubiquitinación/efectos de los fármacos
12.
Neuropharmacology ; 128: 43-53, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28943283

RESUMEN

Fragile X syndrome (FXS) is the leading cause of inherited intellectual disability, with additional symptoms including attention deficit and hyperactivity, anxiety, impulsivity, and repetitive movements or actions. The majority of FXS cases are attributed to a CGG expansion that leads to transcriptional silencing and diminished expression of fragile X mental retardation protein (FMRP). FMRP, an RNA binding protein, regulates the synthesis of dendritically-translated mRNAs by stalling ribosomal translation. Loss of FMRP leads to increased translation of some of these mRNAs, including the CNS-specific tyrosine phosphatase STEP (STriatal-Enriched protein tyrosine Phosphatase). Genetic reduction of STEP in Fmr1 KO mice have diminished audiogenic seizures and a reversal of social and non-social anxiety-related abnormalities. This study investigates whether a newly discovered STEP inhibitor (TC-2153) could attenuate the behavioral and synaptic abnormalities in Fmr1 KO mice. TC-2153 reversed audiogenic seizure incidences, reduced hyperactivity, normalized anxiety states, and increased sociability in Fmr1 KO mice. Moreover, TC-2153 reduced dendritic spine density and improved synaptic aberrations in Fmr1 KO neuronal cultures as well as in vivo. TC-2153 also reversed the mGluR-mediated exaggerated LTD in brain slices derived from Fmr1 KO mice. These studies suggest that STEP inhibition may have therapeutic benefit in FXS.


Asunto(s)
Potenciales Postsinápticos Excitadores/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/complicaciones , Síndrome del Cromosoma X Frágil/patología , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Sinapsis/patología , Adaptación Ocular/efectos de los fármacos , Adaptación Ocular/genética , Animales , Animales Recién Nacidos , Ansiedad/tratamiento farmacológico , Ansiedad/etiología , Benzotiepinas/farmacología , Conducta de Elección/efectos de los fármacos , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/genética , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Epilepsia Refleja/tratamiento farmacológico , Epilepsia Refleja/etiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Conducta Exploratoria/efectos de los fármacos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Hipocampo/patología , Hipocampo/ultraestructura , Ratones , Ratones Transgénicos
13.
ACS Cent Sci ; 3(12): 1322-1328, 2017 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-29296673

RESUMEN

Dysregulation of protein tyrosine phosphorylation has been implicated in a number of human diseases, including cancer, diabetes, and neurodegenerative diseases. As a result of their essential role in regulating protein tyrosine phosphorylation levels, protein tyrosine phosphatases (PTPs) have emerged as important yet challenging therapeutic targets. Here we report on the development and application of a glutathione-responsive motif to facilitate the efficient intracellular delivery of a novel class of selenosulfide phosphatase inhibitors for the selective active site directed inhibition of the targeted PTP by selenosulfide exchange with the active site cysteine. The strategy leverages the large difference in extracellular and intracellular glutathione levels to deliver selenosulfide phosphatase inhibitors to cells. As an initial exploration of the prodrug platform and the corresponding selenosulfide covalent inhibitor class, potent and selective inhibitors were developed for two therapeutically relevant PTP targets: the Mycobacterium tuberculosis virulence factor mPTPA and the CNS-specific tyrosine phosphatase, striatal-enriched protein tyrosine phosphatase (STEP). The lead selenosulfide inhibitors enable potent and selective inhibition of their respective targets over a panel of human PTPs and a representative cysteine protease. Kinetic parameters of the inhibitors were characterized, including reversibility of inhibition and rapid rate of GSH exchange at intracellular GSH concentrations. Additionally, active site covalent inhibitor-labeling with an mPTPA inhibitor was rigorously confirmed by mass spectrometry, and cellular activity was demonstrated with a STEP prodrug inhibitor in cortical neurons.

14.
J Neurochem ; 136(2): 285-94, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26316048

RESUMEN

Brain-derived neurotrophic factor (BDNF) regulates synaptic strengthening and memory consolidation, and altered BDNF expression is implicated in a number of neuropsychiatric and neurodegenerative disorders. BDNF potentiates N-methyl-D-aspartate receptor function through activation of Fyn and ERK1/2. STriatal-Enriched protein tyrosine Phosphatase (STEP) is also implicated in many of the same disorders as BDNF but, in contrast to BDNF, STEP opposes the development of synaptic strengthening. STEP-mediated dephosphorylation of the NMDA receptor subunit GluN2B promotes internalization of GluN2B-containing NMDA receptors, while dephosphorylation of the kinases Fyn, Pyk2, and ERK1/2 leads to their inactivation. Thus, STEP and BDNF have opposing functions. In this study, we demonstrate that manipulation of BDNF expression has a reciprocal effect on STEP61 levels. Reduced BDNF signaling leads to elevation of STEP61 both in BDNF(+/-) mice and after acute BDNF knockdown in cortical cultures. Moreover, a newly identified STEP inhibitor reverses the biochemical and motor abnormalities in BDNF(+/-) mice. In contrast, increased BDNF signaling upon treatment with a tropomyosin receptor kinase B agonist results in degradation of STEP61 and a subsequent increase in the tyrosine phosphorylation of STEP substrates in cultured neurons and in mouse frontal cortex. These findings indicate that BDNF-tropomyosin receptor kinase B signaling leads to degradation of STEP61 , while decreased BDNF expression results in increased STEP61 activity. A better understanding of the opposing interaction between STEP and BDNF in normal cognitive functions and in neuropsychiatric disorders will hopefully lead to better therapeutic strategies. Altered expression of BDNF and STEP61 has been implicated in several neurological disorders. BDNF and STEP61 are known to regulate synaptic strengthening, but in opposite directions. Here, we report that reduced BDNF signaling leads to elevation of STEP61 both in BDNF(+/-) mice and after acute BDNF knockdown in cortical cultures. In contrast, activation of TrkB receptor results in the degradation of STEP61 and reverses hyperlocomotor activity in BDNF(+/-) mice. Moreover, inhibition of STEP61 by TC-2153 is sufficient to enhance the Tyr phosphorylation of STEP substrates and also reverses hyperlocomotion in BDNF(+/-) mice. These findings give us a better understanding of the regulation of STEP61 by BDNF in normal cognitive functions and in neuropsychiatric disorders.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Regulación hacia Abajo/fisiología , Neuronas/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Animales , Benzotiepinas/farmacología , Encéfalo/citología , Factor Neurotrófico Derivado del Encéfalo/genética , Células Cultivadas , Inhibidores de Cisteína Proteinasa/farmacología , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Embrión de Mamíferos , Femenino , Flavonas/farmacología , Leupeptinas/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Neuronas/efectos de los fármacos , Proteínas Tirosina Fosfatasas/genética , ARN Interferente Pequeño/farmacología , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
15.
Cell Mol Life Sci ; 73(7): 1503-14, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26450419

RESUMEN

Brain-derived neurotrophic factor (BDNF) and STriatal-Enriched protein tyrosine Phosphatase 61 (STEP61) have opposing functions in the brain, with BDNF supporting and STEP61 opposing synaptic strengthening. BDNF and STEP61 also exhibit an inverse pattern of expression in a number of brain disorders, including schizophrenia (SZ). NMDAR antagonists such as phencyclidine (PCP) elicit SZ-like symptoms in rodent models and unaffected individuals, and exacerbate psychotic episodes in SZ. Here we characterize the regulation of BDNF expression by STEP61, utilizing PCP-treated cortical culture and PCP-treated mice. PCP-treated cortical neurons showed both an increase in STEP61 levels and a decrease in BDNF expression. The reduction in BDNF expression was prevented by STEP61 knockdown or use of the STEP inhibitor, TC-2153. The PCP-induced increase in STEP61 expression was associated with the inhibition of CREB-dependent BDNF transcription. Similarly, both genetic and pharmacologic inhibition of STEP prevented the PCP-induced reduction in BDNF expression in vivo and normalized PCP-induced hyperlocomotion and cognitive deficits. These results suggest a mechanism by which STEP61 regulates BDNF expression, with implications for cognitive functioning in CNS disorders.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Trastornos del Conocimiento/tratamiento farmacológico , Fenciclidina/uso terapéutico , Proteínas Tirosina Fosfatasas/metabolismo , Animales , Benzotiepinas/farmacología , Factor Neurotrófico Derivado del Encéfalo/análisis , Proteína de Unión a CREB/antagonistas & inhibidores , Proteína de Unión a CREB/genética , Proteína de Unión a CREB/metabolismo , Células Cultivadas , Trastornos del Conocimiento/metabolismo , Trastornos del Conocimiento/patología , Regulación hacia Abajo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Actividad Motora/efectos de los fármacos , Neuronas/citología , Neuronas/metabolismo , Fenciclidina/farmacología , Fosforilación/efectos de los fármacos , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas/genética , Interferencia de ARN , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Ubiquitinación
16.
Mol Neurobiol ; 53(6): 4261-4273, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26223799

RESUMEN

Brain-derived neurotrophic factor (BDNF) promotes synaptic strengthening through the regulation of kinase and phosphatase activity. Conversely, striatal-enriched protein tyrosine phosphatase (STEP) opposes synaptic strengthening through inactivation or internalization of signaling molecules. Here, we investigated whether BDNF regulates STEP levels/activity. BDNF induced a reduction of STEP61 levels in primary cortical neurons, an effect that was prevented by inhibition of tyrosine kinases, phospholipase C gamma, or the ubiquitin-proteasome system (UPS). The levels of pGluN2B(Tyr1472) and pERK1/2(Thr202/Tyr204), two STEP substrates, increased in BDNF-treated cultures, and blockade of the UPS prevented STEP61 degradation and reduced BDNF-induced GluN2B and ERK1/2 phosphorylation. Moreover, brief or sustained cell depolarization reduced STEP61 levels in cortical neurons by different mechanisms. BDNF also promoted UPS-mediated STEP61 degradation in cultured striatal and hippocampal neurons. In contrast, nerve growth factor and neurotrophin-3 had no effect on STEP61 levels. Our results thus indicate that STEP61 degradation is an important event in BDNF-mediated effects.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Proteolisis/efectos de los fármacos , Animales , Corteza Cerebral/citología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Hipocampo/citología , Potenciales de la Membrana/efectos de los fármacos , Ratones , Neostriado/metabolismo , Factor de Crecimiento Nervioso/farmacología , Neuronas/metabolismo , Neurotrofina 3/farmacología , Fosfolipasa C gamma/metabolismo , Fosforilación/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Ubiquitinación/efectos de los fármacos
17.
F1000Res ; 52016.
Artículo en Inglés | MEDLINE | ID: mdl-29098072

RESUMEN

This commentary focuses on potential molecular mechanisms related to the dysfunctional synaptic plasticity that is associated with neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. Specifically, we focus on the role of striatal-enriched protein tyrosine phosphatase (STEP) in modulating synaptic function in these illnesses. STEP affects neuronal communication by opposing synaptic strengthening and does so by dephosphorylating several key substrates known to control synaptic signaling and plasticity. STEP levels are elevated in brains from patients with Alzheimer's and Parkinson's disease. Studies in model systems have found that high levels of STEP result in internalization of glutamate receptors as well as inactivation of ERK1/2, Fyn, Pyk2, and other STEP substrates necessary for the development of synaptic strengthening. We discuss the search for inhibitors of STEP activity that may offer potential treatments for neurocognitive disorders that are characterized by increased STEP activity. Future studies are needed to examine the mechanisms of differential and region-specific changes in STEP expression pattern, as such knowledge could lead to targeted therapies for disorders involving disrupted STEP activity.

18.
J Neurochem ; 134(4): 629-41, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25951993

RESUMEN

The tyrosine kinase Fyn has two regulatory tyrosine residues that when phosphorylated either activate (Tyr(420)) or inhibit (Tyr(531)) Fyn activity. Within the central nervous system, two protein tyrosine phosphatases (PTPs) target these regulatory tyrosines in Fyn. PTPα dephosphorylates Tyr(531) and activates Fyn, while STEP (STriatal-Enriched protein tyrosine Phosphatase) dephosphorylates Tyr(420) and inactivates Fyn. Thus, PTPα and STEP have opposing functions in the regulation of Fyn; however, whether there is cross talk between these two PTPs remains unclear. Here, we used molecular techniques in primary neuronal cultures and in vivo to demonstrate that STEP negatively regulates PTPα by directly dephosphorylating PTPα at its regulatory Tyr(789). Dephosphorylation of Tyr(789) prevents the translocation of PTPα to synaptic membranes, blocking its ability to interact with and activate Fyn. Genetic or pharmacologic reduction in STEP61 activity increased the phosphorylation of PTPα at Tyr(789), as well as increased translocation of PTPα to synaptic membranes. Activation of PTPα and Fyn and trafficking of GluN2B to synaptic membranes are necessary for ethanol (EtOH) intake behaviors in rodents. We tested the functional significance of STEP61 in this signaling pathway by EtOH administration to primary cultures as well as in vivo, and demonstrated that the inactivation of STEP61 by EtOH leads to the activation of PTPα, its translocation to synaptic membranes, and the activation of Fyn. These findings indicate a novel mechanism by which STEP61 regulates PTPα and suggest that STEP and PTPα coordinate the regulation of Fyn. STEP61 , PTPα, Fyn, and NMDA receptor (NMDAR) have been implicated in ethanol intake behaviors in the dorsomedial striatum (DMS) in rodents. Here, we report that PTPα is a novel substrate for STEP61. Upon ethanol exposure, STEP61 is phosphorylated and inactivated by protein kinase A (PKA) signaling in the DMS. As a result of STEP61 inhibition, there is an increase in the phosphorylation of PTPα, which translocates to lipid rafts and activates Fyn and subsequent NMDAR signaling. The results demonstrate a synergistic regulation of Fyn-NMDAR signaling by STEP61 and PTPα, which may contribute to the regulation of ethanol-related behaviors. NMDA, N-methyl-D-aspartate; PTPα, receptor-type protein tyrosine phosphatase alpha; STEP, STriatal-Enriched protein tyrosine Phosphatase.


Asunto(s)
Cuerpo Estriado/enzimología , Proteínas Proto-Oncogénicas c-fyn/fisiología , Proteínas Tirosina Fosfatasas Clase 4 Similares a Receptores/fisiología , Transducción de Señal/fisiología , Animales , Células Cultivadas , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratas , Ratas Sprague-Dawley
19.
Neurotoxicol Teratol ; 48: 69-77, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25683798

RESUMEN

The persistence of effects of prenatal drug exposure (PDE) on brain functioning during adolescence is poorly understood. We explored neural activation to a visuospatial working memory (VSWM) versus a control task using functional magnetic resonance imaging (fMRI) in adolescents with PDE and a community comparison group (CC) of non-exposed adolescents. We applied graph theory metrics to resting state data using a network of nodes derived from the VSWM task activation map to further explore connectivity underlying WM functioning. Participants (ages 12-15 years) included 47 adolescents (27 PDE and 20 CC). All analyses controlled for potentially confounding differences in birth characteristics and postnatal environment. Significant group by task differences in brain activation emerged in the left middle frontal gyrus (BA 6) with the CC group, but not the PDE group, activating this region during VSWM. The PDE group deactivated the culmen, whereas the CC group activated it during the VSWM task. The CC group demonstrated a significant relation between reaction time and culmen activation, not present in the PDE group. The network analysis underlying VSWM performance showed that PDE group had lower global efficiency than the CC group and a trend level reduction in local efficiency. The network node corresponding to the BA 6 group by task interaction showed reduced nodal efficiency and fewer direct connections to other nodes in the network. These results suggest that adolescence reveals altered neural functioning related to response planning that may reflect less efficient network functioning in youth with PDE.


Asunto(s)
Encéfalo/efectos de los fármacos , Cocaína/efectos adversos , Heroína/efectos adversos , Memoria a Corto Plazo/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Adolescente , Encéfalo/fisiopatología , Mapeo Encefálico , Niño , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Memoria a Corto Plazo/fisiología , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiopatología , Embarazo , Efectos Tardíos de la Exposición Prenatal/psicología , Percepción Visual/efectos de los fármacos
20.
Proc Natl Acad Sci U S A ; 112(4): 1202-7, 2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25583483

RESUMEN

Parkinson's disease (PD) is characterized by the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc). The loss of SNc dopaminergic neurons affects the plasticity of striatal neurons and leads to significant motor and cognitive disabilities during the progression of the disease. PARK2 encodes for the E3 ubiquitin ligase parkin and is implicated in genetic and sporadic PD. Mutations in PARK2 are a major contributing factor in the early onset of autosomal-recessive juvenile parkinsonism (AR-JP), although the mechanisms by which a disruption in parkin function contributes to the pathophysiology of PD remain unclear. Here we demonstrate that parkin is an E3 ligase for STEP61 (striatal-enriched protein tyrosine phosphatase), a protein tyrosine phosphatase implicated in several neuropsychiatric disorders. In cellular models, parkin ubiquitinates STEP61 and thereby regulates its level through the proteasome system, whereas clinically relevant parkin mutants fail to do so. STEP61 protein levels are elevated on acute down-regulation of parkin or in PARK2 KO rat striatum. Relevant to PD, STEP61 accumulates in the striatum of human sporadic PD and in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned mice. The increase in STEP61 is associated with a decrease in the phosphorylation of its substrate ERK1/2 and the downstream target of ERK1/2, pCREB [phospho-CREB (cAMP response element-binding protein)]. These results indicate that STEP61 is a novel substrate of parkin, although further studies are necessary to determine whether elevated STEP61 levels directly contribute to the pathophysiology of PD.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Sistema de Señalización de MAP Quinasas , Intoxicación por MPTP/enzimología , Proteínas Tirosina Fosfatasas no Receptoras/biosíntesis , Ubiquitina-Proteína Ligasas/biosíntesis , Animales , Cuerpo Estriado/enzimología , Cuerpo Estriado/patología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Regulación hacia Abajo/genética , Células HEK293 , Humanos , Intoxicación por MPTP/genética , Intoxicación por MPTP/patología , Ratones , Ratones Noqueados , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/genética , Ratas , Ratas Sprague-Dawley , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/genética , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...