Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Nat Commun ; 11(1): 2303, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32385276

RESUMEN

White adipose tissue (WAT) expansion in obesity occurs through enlargement of preexisting adipocytes (hypertrophy) and through formation of new adipocytes (adipogenesis). Adipogenesis results in WAT hyperplasia, smaller adipocytes and a metabolically more favourable form of obesity. How obesogenic WAT hyperplasia is induced remains, however, poorly understood. Here, we show that the mechanosensitive cationic channel Piezo1 mediates diet-induced adipogenesis. Mice lacking Piezo1 in mature adipocytes demonstrated defective differentiation of preadipocyte into mature adipocytes when fed a high fat diet (HFD) resulting in larger adipocytes, increased WAT inflammation and reduced insulin sensitivity. Opening of Piezo1 in mature adipocytes causes the release of the adipogenic fibroblast growth factor 1 (FGF1), which induces adipocyte precursor differentiation through activation of the FGF-receptor-1. These data identify a central feed-back mechanism by which mature adipocytes control adipogenesis during the development of obesity and suggest Piezo1-mediated adipocyte mechano-signalling as a mechanism to modulate obesity and its metabolic consequences.


Asunto(s)
Adipocitos/metabolismo , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Canales Iónicos/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Adipogénesis/fisiología , Tejido Adiposo Blanco/metabolismo , Animales , Calorimetría , Células Cultivadas , Femenino , Factor 1 de Crecimiento de Fibroblastos/genética , Citometría de Flujo , Humanos , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Insulina/sangre , Interleucina-6/sangre , Canales Iónicos/genética , Masculino , Ratones , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
3.
Curr Biol ; 28(5): 810-816.e3, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-29478852

RESUMEN

Anatomical and functional asymmetries are widespread in the animal kingdom [1, 2]. In vertebrates, many visceral organs are asymmetrically placed [3]. In snails, shells and inner organs coil asymmetrically, and in Drosophila, genitalia and hindgut undergo a chiral rotation during development. The evolutionary origin of these asymmetries remains an open question [1]. Nodal signaling is widely used [4], and many, but not all, vertebrates use cilia for symmetry breaking [5]. In Drosophila, which lacks both cilia and Nodal, the unconventional myosin ID (myo1d) gene controls dextral rotation of chiral organs [6, 7]. Here, we studied the role of myo1d in left-right (LR) axis formation in Xenopus. Morpholino oligomer-mediated myo1d downregulation affected organ placement in >50% of morphant tadpoles. Induction of the left-asymmetric Nodal cascade was aberrant in >70% of cases. Expression of the flow-target gene dand5 was compromised, as was flow itself, due to shorter, fewer, and non-polarized cilia at the LR organizer. Additional phenotypes pinpointed Wnt/planar cell polarity signaling and suggested that myo1d, like in Drosophila [8], acted in the context of the planar cell polarity pathway. Indeed, convergent extension of gastrula explant cultures was inhibited in myo1d morphants, and the ATF2 reporter gene for non-canonical Wnt signaling was downregulated. Finally, genetic interference experiments demonstrated a functional interaction between the core planar cell polarity signaling gene vangl2 and myo1d in LR axis formation. Thus, our data identified myo1d as a common denominator of arthropod and chordate asymmetry, in agreement with a monophyletic origin of animal asymmetry.


Asunto(s)
Tipificación del Cuerpo/genética , Embrión no Mamífero/embriología , Regulación del Desarrollo de la Expresión Génica/genética , Morfogénesis/genética , Miosinas/genética , Proteínas de Xenopus/genética , Xenopus laevis/embriología , Animales , Polaridad Celular/genética , Gástrula/embriología , Miosinas/metabolismo , Proteínas de Xenopus/metabolismo
4.
Sci Rep ; 7: 43010, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28220837

RESUMEN

Goosecoid (Gsc) expression marks the primary embryonic organizer in vertebrates and beyond. While functions have been assigned during later embryogenesis, the role of Gsc in the organizer has remained enigmatic. Using conditional gain-of-function approaches in Xenopus and mouse to maintain Gsc expression in the organizer and along the axial midline, neural tube closure defects (NTDs) arose and dorsal extension was compromised. Both phenotypes represent convergent extension (CE) defects, arising from impaired Wnt/planar cell polarity (PCP) signaling. Dvl2 recruitment to the cell membrane was inhibited by Gsc in Xenopus animal cap assays and key Wnt/PCP factors (RhoA, Vangl2, Prickle, Wnt11) rescued Gsc-mediated NTDs. Re-evaluation of endogenous Gsc functions in MO-mediated gene knockdown frog and knockout mouse embryos unearthed PCP/CE-related phenotypes as well, including cartilage defects in Xenopus and misalignment of inner ear hair cells in mouse. Our results assign a novel function to Gsc as an inhibitor of Wnt/PCP-mediated CE. We propose that in the organizer Gsc represses CE as well: Gsc-expressing prechordal cells, which leave the organizer first, migrate and do not undergo CE like the Gsc-negative notochordal cells, which subsequently emerge from the organizer. In this model, Gsc provides a switch between cell migration and CE, i.e. cell intercalation.


Asunto(s)
Proteína Goosecoide/metabolismo , Organizadores Embrionarios/metabolismo , Proteínas Wnt/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Animales , Polaridad Celular , Proteínas Dishevelled/metabolismo , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Embrión no Mamífero/metabolismo , Embrión no Mamífero/patología , Desarrollo Embrionario , Genes Reporteros , Proteína Goosecoide/deficiencia , Proteína Goosecoide/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica de Rastreo , Transducción de Señal , Proteínas de Xenopus/genética
5.
J Cardiovasc Dev Dis ; 5(1)2017 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-29367579

RESUMEN

Laterality of inner organs is a wide-spread characteristic of vertebrates and beyond. It is ultimately controlled by the left-asymmetric activation of the Nodal signaling cascade in the lateral plate mesoderm of the neurula stage embryo, which results from a cilia-driven leftward flow of extracellular fluids at the left-right organizer. This scenario is widely accepted for laterality determination in wildtype specimens. Deviations from this norm come in different flavors. At the level of organ morphogenesis, laterality may be inverted (situs inversus) or non-concordant with respect to the main body axis (situs ambiguus or heterotaxia). At the level of Nodal cascade gene activation, expression may be inverted, bilaterally induced, or absent. In a given genetic situation, patterns may be randomized or predominantly lacking laterality (absence or bilateral activation). We propose that the distributions of patterns observed may be indicative of the underlying molecular defects, with randomizations being primarily caused by defects in the flow-generating ciliary set-up, and symmetrical patterns being the result of impaired flow sensing, on the left, the right, or both sides. This prediction, the reasoning of which is detailed in this review, pinpoints functions of genes whose role in laterality determination have remained obscure.

6.
Genesis ; 52(6): 588-99, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24585437

RESUMEN

Vertebrates display asymmetric arrangements of inner organs such as heart and stomach. The Nodal signaling cascade in the left lateral plate mesoderm in all cases directs asymmetric morphogenesis and placement during organogenesis. Mechanisms that lead up to left-asymmetric Nodal induction seem to differ between the vertebrates. Cilia produce a leftward extracellular fluid flow in zebrafish, medaka, mouse, rabbit, and Xenopus embryos during neurulation. In Xenopus, earlier asymmetric cues were described. Some, such as Rab11, apparently act in the zygote. Others were efficiently manipulated in ventral-right cells at the four-cell stage, a lineage presumably independent of the ciliated gastrocoel roof plate (GRP) during neurulation. Here, we show that one- and four-cell manipulations of Rab11 showed equal low efficiencies of left-right disturbances. We also reevaluated the lineage of the GRP. By tracing back future ciliated cells from the gastrula to the four-cell stage, we show that ventral cells contribute to ciliated sensory cells at the border of the GRP. Knockdown of the Nodal inhibitor Coco in the ventral right lineage resulted in embryos with ectopic right-sided Nodal and Pitx2c expression. Together, these experiments support a cilia-based mechanism of symmetry breakage in the frog Xenopus.


Asunto(s)
Blastómeros/metabolismo , Tipificación del Cuerpo/fisiología , Xenopus/embriología , Proteínas de Unión al GTP rab/genética , Animales , Gástrula/embriología , Gástrula/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Mesodermo/embriología , Mesodermo/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Proteínas de Unión al GTP rab/metabolismo
7.
Cell Rep ; 3(3): 615-21, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-23499442

RESUMEN

Neural crest cells (NCCs) migrate throughout the embryo to differentiate into cell types of all germ layers. Initial directed NCC emigration relies on planar cell polarity (PCP), which through the activity of the small GTPases RhoA and Rac governs the actin-driven formation of polarized cell protrusions. We found that the actin binding protein calponin 2 (Cnn2) was expressed in protrusions at the leading edge of migratory NCCs in chicks and frogs. Cnn2 knockdown resulted in NCC migration defects in frogs and chicks and randomized outgrowth of cell protrusions in NCC explants. Morphant cells showed central stress fibers at the expense of the peripheral actin network. Cnn2 acted downstream of Wnt/PCP, as migration defects induced by dominant-negative Wnt11 or inhibition of RhoA function were rescued by Cnn2 knockdown. These results suggest that Cnn2 modulates actin dynamics during NCC migration as an effector of noncanonical Wnt/PCP signaling.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Movimiento Celular , Células Madre Embrionarias/fisiología , Proteínas de Microfilamentos/metabolismo , Cresta Neural/metabolismo , Proteínas Wnt/metabolismo , Actinas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Unión al Calcio/genética , Extensiones de la Superficie Celular/metabolismo , Embrión de Pollo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Células Madre Embrionarias/metabolismo , Técnicas In Vitro , Proteínas de Microfilamentos/genética , Datos de Secuencia Molecular , Cresta Neural/citología , Vía de Señalización Wnt , Xenopus , Proteína de Unión al GTP rhoA/metabolismo , Calponinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA