Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Technol ; 43(18): 2809-2824, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33754952

RESUMEN

A Pulsed Electrical Field (PEF) reactor was developed to process biological sludge as a pretreatment method prior to anaerobic digestion. This study focuses on the effects of operational parameters such as applied voltage, pH, conductivity, flow-rate, and temperature affecting the treatment of waste active sludge (WAS) by PEF, the simulation of reactor process conditions and anaerobic biodegradation of PEF pretreated sludge. The effects of the sludge conductivity, flow-rate, and temperature on the Soluble Chemical Oxygen Demand (SCOD) of WAS treated by PEF reactor were investigated by using a Box-Wilson statistical experiment design. Simulations of the PEF process conditions were performed to verify experimental results. After PEF optimization study, the PEF operational conditions for maximum SCOD were obtained at 4 mS/cm conductivity, 5 mL/min flow-rate, and 40 °C temperature during PEF treatment. The measured and predicted SCOD showed a good consistency (R2 = 0.92). After it was pretreated by the PEF, the SCOD, total nitrogen, total phosphorus, polysaccharide and protein contents of WAS increased. However filterability property also decreased. In the anaerobic digestion study, the reactor fed with the PEF pretreated WAS provided 1.70 times higher methane production compared with raw sludge. In addition to this situation, 18% and 19% improvements, respectively, were observed in SCOD and VSS reductions when it was compared with raw sludge in the 23 days of anaerobic operation. Sixteen percent decrease in CST showed that the PEF enhanced the filterability of WAS during the anaerobic stabilization.


Asunto(s)
Reactores Biológicos , Aguas del Alcantarillado , Anaerobiosis , Biodegradación Ambiental , Análisis de la Demanda Biológica de Oxígeno , Metano , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos
2.
J Hazard Mater ; 187(1-3): 222-34, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21295402

RESUMEN

A sequential aerobic completely stirred tank reactor (CSTR) following the anaerobic migrating blanket reactor (AMBR) was used to treat a synthetic wastewater containing 2,4-dinitrotoluene (2,4-DNT). A Box-Wilson statistical experiment design was used to determine the effects of 2,4-DNT and the hydraulic retention times (HRTs) on 2,4-DNT and COD removal efficiencies in the AMBR reactor. The 2,4-DNT concentrations in the feed (0-280 mg/L) and the HRT (0.5-10 days) were considered as the independent variables while the 2,4-DNT and chemical oxygen demand (COD) removal efficiencies, total and methane gas productions, methane gas percentage, pH, total volatile fatty acid (TVFA) and total volatile fatty acid/bicarbonate alkalinity (TVFA/Bic.Alk.) ratio were considered as the objective functions in the Box-Wilson statistical experiment design in the AMBR. The predicted data for the parameters given above were determined from the response functions by regression analysis of the experimental data and exhibited excellent agreement with the experimental results. The optimum HRT which gave the maximum COD (97.00%) and 2,4-DNT removal (99.90%) efficiencies was between 5 and 10 days at influent 2,4-DNT concentrations 1-280 mg/L in the AMBR. The aerobic CSTR was used for removals of residual COD remaining from the AMBR, and for metabolites of 2,4-DNT. The maximum COD removal efficiency was 99% at an HRT of 1.89 days at a 2,4-DNT concentration of 239 mg/L in the aerobic CSTR. It was found that 280 mg/L 2,4-DNT transformed to 2,4-diaminotoluene (2,4-DAT) via 2-amino-4-nitrotoluene (2-A-4-NT) and 4-amino-2-nitrotoluene (4-A-2-NT) in the AMBR. The maximum 2,4-DAT removal was 82% at an HRT of 8.61 days in the aerobic CSTR. The maximum total COD and 2,4-DNT removal efficiencies were 99.00% and 99.99%, respectively, at an influent 2,4-DNT concentration of 239 mg/L and at 1.89 days of HRT in the sequential AMBR/CSTR.


Asunto(s)
Reactores Biológicos , Dinitrobencenos/química , Contaminantes Químicos del Agua/química , Aerobiosis , Anaerobiosis
3.
J Hazard Mater ; 185(2-3): 1187-97, 2011 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-21035948

RESUMEN

In this study, the acute toxicities of nitrobenzene (NB) and para nitrophenol (p-NP) were investigated in a high rate sequential anaerobic migrating blanket (AMBR)/aerobic completely stirred tank reactor (CSTR) using Microtox and Daphnia magna tests. After sequential anaerobic and aerobic treatments, the inhibitions in the Microtox bacteria decreased from an initial 78.10-48.20% and 4.00%, respectively, in wastewater containing 40.00 mg/L p-NP. The inhibitions of the influent wastewater containing 60.00 mg/L NB decreased from 72.10% to 45.30% and to 4.00% after anaerobic and aerobic treatment, respectively. The acute toxicity removals were 94% and 93% in the effluent of the whole sequential system, for p-NP and NB, respectively. The acute toxicity in the influent was dependent on the parent NB and p-NP concentrations and ons their physicochemical properties such as hydrophobicity, octanol/water partition coefficient and vapour density for both Microtox bacteria and Daphnia magna while the toxicity in the effluent of the anaerobic reactor was strongly dependent on the metabolites of p-NP (p-amino phenol, phenol, NH(4)-N) and NB (aniline) for Microtox test. This effluent was not toxic to Daphnia magna.


Asunto(s)
Daphnia/efectos de los fármacos , Nitrobencenos/toxicidad , Nitrofenoles/toxicidad , Photobacterium/efectos de los fármacos , Aerobiosis , Anaerobiosis , Animales
4.
J Hazard Mater ; 168(1): 390-9, 2009 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-19286317

RESUMEN

A laboratory scale anaerobic migrating blanket reactor (AMBR) reactor was operated at nitrobenzene (NB) loading rates increasing from 3.33 to 66.67 g NB/m(3)day and at a constant hydraulic retention time (HRT) of 6 days to observe the effects of increasing NB concentrations on chemical oxygen demand (COD), NB removal efficiencies, bicarbonate alkalinity, volatile fatty acid (VFA) accumulation and methane gas percentage. Moreover, the effect of an aerobic completely stirred tank reactor (CSTR) reactor, following the anaerobic reactor, on treatment efficiencies was also investigated. Approximately 91-94% COD removal efficiencies were observed up to a NB loading rate of 30.00 g/m(3)day in the AMBR reactor. The COD removal efficiencies decreased from 91% to 85% at a NB loading rate of 66.67 g/m(3)day. NB removal efficiencies were approximately 100% at all NB loading rates. The maximum total gas, methane gas productions and methane percentage were found to be 4.1, 2.6l/day and 59%, respectively, at a NB loading rate of 30.00 g/m(3)day. The optimum pH values were found to be between 7.2 and 8.4 for maximum methanogenesis. The total volatile fatty acid (TVFA) concentrations in the effluent were 110 and 70 mg/l in the first and second compartments at NB loading rates as high as 66.67 and 6.67 g/m(3)day, respectively, while they were measured as zero in the effluent of the AMBR reactor. In this study, from 180 mg/l NB 66 mg/l aniline was produced in the anaerobic reactor while aniline was completely removed and transformed to 2mg/l of cathechol in the aerobic CSTR reactor. Overall COD removal efficiencies were found to be 95% and 99% for NB loading rates of 3.33 and 66.67 g/m(3)day in the sequential anaerobic AMBR/aerobic CSTR reactor system, respectively. The toxicity tests performed with Photobacterium phosphoreum (LCK 480, LUMIStox) and Daphnia magna showed that the toxicity decreased with anaerobic/aerobic sequential reactor system from the influent, anaerobic and to aerobic effluents.


Asunto(s)
Metano , Nitrobencenos/química , Animales , Daphnia , Ácidos Grasos Volátiles/análisis , Gases , Concentración de Iones de Hidrógeno , Fenómenos Químicos Orgánicos , Oxígeno/química , Photobacterium , Proyectos Piloto , Pruebas de Toxicidad
5.
Bioresour Technol ; 100(7): 2162-70, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19059774

RESUMEN

The effects of increasing nitrobenzene (NB) concentrations and hydraulic retention times (HRT) on the treatment of NB were investigated in a sequential anaerobic baffled reactor (ABR)/aerobic completely stirred tank reactor (CSTR) system. In the first step of the study, the maximum COD removal efficiencies were found as 88% and 92% at NB concentrations varying between 30 mg L(-1) and 210 mg L(-1) in ABR. The minimum COD removal efficiency was 79% at a NB concentration of 700 mg L(-1). The removal efficiency of NB was nearly 100% for all NB concentrations in the ABR reactor. The methane gas production and the methane gas percentage remained stable (1500 mL day(-1) and 48-50%, respectively) as the NB concentration was increased from 30 to 210 mg L(-1). In the second step of the study it was found that as the HRT decreased from 10.38 days to 2.5 days the COD removal efficiencies decreased slightly from 94% to 92% in the ABR. For maximum COD and NB removal efficiencies the optimum HRT was found as 2.5 days in the ABR. The total COD removal efficiency was 95% in sequential anaerobic (ABR)/aerobic (CSTR) reactor system at a minimum HRT of 1 day. When the HRT was decreased from 10.38 days to 1 day, the methane percentage decreased from 42% to 29% in an ABR reactor treating 100 mg L(-1) NB. Nitrobenzene was reduced to aniline under anaerobic conditions while aniline was mineralized to catechol with meta cleavage under aerobic conditions.


Asunto(s)
Reactores Biológicos , Nitrobencenos/aislamiento & purificación , Nitrobencenos/farmacología , Anaerobiosis/efectos de los fármacos , Compuestos de Anilina/aislamiento & purificación , Biodegradación Ambiental/efectos de los fármacos , Gases , Metano/metabolismo , Oxidación-Reducción/efectos de los fármacos , Oxígeno/aislamiento & purificación , Factores de Tiempo
6.
J Hazard Mater ; 161(2-3): 787-99, 2009 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-18515004

RESUMEN

A laboratory scale anaerobic migrating blanket reactor (AMBR) was operated at different HRTs (1-10.38 days) in order to determine the para-nitrophenol (p-NP) and COD removal kinetic constants. The reactor was fed with 40 mg L(-1)p-NP and 3000 mg L(-1) glucose-COD. Modified Stover-Kincannon and Grau second-order kinetic models were applied to the experimental data. The predicted p-NP and COD concentrations were calculated using the kinetic constants. It was found that these data were in better agreement with the observed ones in the modified Stover-Kincannon compared to Grau second-order model. The kinetic constants calculated according to Stover-Kincannon model are as follows: the saturation value constant (K(B)) and maximum utilization rate constants (R(max)) were found as 31.55 g CODL(-1)day(-1), 29.49 g CODL(-1)day(-1) for COD removal and 0.428 g p-NPL(-1)day(-1), 0.407 g p-NPL(-1)day(-1) for p-NP removal, respectively (R(2)=1). The values of (a) and (b) were found to be 0.096 day and 1.071 (dimensionless) with high correlation coefficients of R(2)=0.85 for COD removal. Kinetic constants for specific gas production rate were evaluated using modified Stover-Kincannon, Van der Meer and Heerrtjes and Chen and Hasminoto models. It was shown that Stover-Kincannon model is more appropriate for calculating the effluent COD, p-NP concentrations in AMBR compared to the other models. The maximum specific biogas production rate, G(max), and proportionality constant, G(B), were found to be 1666.7 mL L(-1) day(-1) and 2.83 (dimensionless), respectively in modified Stover-Kincannon gas model. The bacteria had low Haldane inhibition constants (K(ID)=14 and 23 mg L(-1)) for p-NP concentrations higher than 40 mg L(-1) while the half velocity constant (K(s)) increased from 10 to 60 and 118 mg L(-1) with increasing p-NP concentrations from 40 to 85 and 125 mg L(-1).


Asunto(s)
Nitrofenoles/química , Oxígeno/química , Anaerobiosis , Biodegradación Ambiental , Biomasa , Reactores Biológicos , Diseño de Equipo , Gases/metabolismo , Concentración de Iones de Hidrógeno , Residuos Industriales , Cinética , Modelos Teóricos , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos
7.
Water Sci Technol ; 55(10): 227-36, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17564389

RESUMEN

The effects of increasing nitrobenzene (NB) concentrations and hydraulic retention time (HRT) on the performance of anaerobic baffled reactor (ABR) and aerobic completely stirred tank reactor (CSTR) were studied. In the first step the NB concentration was increased from 30 to 700 mg/L at constant COD and flowrates. Maximum COD removal efficiencies in ABR varied between 88-92% as NB concentrations increased from 30 to 210 mg/L. After this dose, COD removal efficiency decreased to 85 and 79% at NB concentrations of 550 and 700 mg/L, respectively. Removal efficiencies of NB were nearly 100% for all NB concentrations in ABR reactor effluent. In the second step, COD and NB concentrations were kept constant while HRT decreased from 10.38 days to 1 day. As HRT decreased from 10.38 to 2.5 days the COD removal efficiencies in the anaerobic and anaerobic/aerobic reactor effluents were 92-94% and 97-98%, respectively. As HRT decreased from 2.5 days to 1 day COD removal efficiencies in the anaerobic and anaerobic/aerobic reactor effluents decreased to 83 and 95%, respectively. This study showed that HRT is a more important operation parameter than increasing NB concentration in ABR/CSTR sequential reactor system. Although ABR/CSTR system exhibited good COD and NB removal efficiencies, the lower HRTs slightly decreased the removal efficiencies compared to increasing NB concentration.


Asunto(s)
Bacterias Aerobias/metabolismo , Bacterias Anaerobias/metabolismo , Reactores Biológicos , Nitrobencenos/metabolismo , Eliminación de Residuos Líquidos/métodos , Cromatografía de Gases , Cromatografía Líquida de Alta Presión , Metano/biosíntesis , Nitrobencenos/análisis , Factores de Tiempo , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...