Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(7): 8417-8429, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38344952

RESUMEN

The molecular pathways that melatonin follows as a Parkinson's disease (PD) antagonist remain poorly elucidated, despite it being a safe and a potential neurotherapeutic drug with a few limitations such as less bioavailability, premature oxidation, brain delivery, etc. Here, we used a biocompatible protein (HSA) nanocarrier for the delivery of melatonin to the brain. This nanomelatonin showed better antioxidative and neuroprotective properties, and it not only improves mitophagy to remove unhealthy mitochondria but also improves mitochondrial biogenesis to counteract rotenone-induced toxicity in an in vitro PD model. We also showed BMI1, a member of the PRC1 complex that regulates mitophagy, whose protein expression was enhanced after nanomelatonin dosage. These effects were translated to a rodent model, where nanomelatonin improves the TH+ve neuron population in SNPC and protects against rotenone-mediated toxicity. Our findings highlight the significantly better in vitro and in vivo neuroprotective effect of nanomelatonin as well as the molecular/cellular dynamics it influences to regulate mitophagy as a measure of the potential therapeutic candidate for PD.


Asunto(s)
Melatonina , Nanopartículas , Fármacos Neuroprotectores , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Melatonina/farmacología , Melatonina/uso terapéutico , Mitofagia , Rotenona/farmacología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
2.
ACS Biomater Sci Eng ; 8(9): 3810-3818, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36005299

RESUMEN

The imbalance in the bone remodeling process with more bone resorption by osteoclasts compared to bone formation by osteoblasts results in a metabolic bone disorder known as osteoporosis. This condition reduces the bone mineral density and increases the risk of fractures due to low bone mass and disrupted bone microarchitecture. Osteoclastogenesis increases when the receptor activator NFκB ligand (RANKL) on the osteoblast surface binds to the receptor activator NFκB (RANK) on the osteoclast surface and the function of the decoy receptor of RANKL, osteoprotegrin, is compromised due to external stimuli such as heparin and lipopolysaccharides. The RANK/RANKL axis promotes the nuclear factor kappa B (NFκB) expression, which in turn increases the histone methyltransferase activity of EzH2 and EzH1 for the epigenetic regulation of osteoclastogenesis-related genes. Genistein counteracts NFκB-induced osteoclastogenesis and downstream signaling through the direct regulation of histone methyltransferase, EzH2 and EzH1, transcription. However, genistein possesses limitations like low bioavailability, low water solubility, high estrogen activity, and thyroid side effects, which obstruct its therapeutic usage. Here, the nanoemulsified formulation of genistein with vitamin D was utilized to circumvent the limitations of genistein so that it can be utilized for therapeutic purposes in osteoporosis management. The nanoemulsification of genistein and vitamin D was performed through the spontaneous emulsification using Tween 80 and medium chain triglyceride oil as an organic phase. The physiologically stable and biocompatible combination of the genistein and vitamin D nanoemulsion (GVNE) exhibited the controlled release pattern of genistein with Korsmeyer-Peppas and Higuchi models under different pH conditions (7.4, 6.5, and 1.2). The GVNE potentially enhanced the therapeutic efficacy under in vitro osteoporosis models and helped restore disease parameters like alkaline phosphatase activity, tartrate-resistant acid phosphatase activity, and the formation of multinuclear giant cells. Molecularly, the GVNE overturned the LPS-induced osteoclastogenesis by downregulation of NFκB expression along with its binding on EzH2 and EzH1 promoters. GVNE effects on the osteoporosis model established it as an efficient antiosteoporotic therapy. This nanonutraceutical-based formulation provides an epigenetic regulation of osteoporosis management and opens new avenues for alternate epigenetic therapies for osteoporosis.


Asunto(s)
Genisteína , Osteoporosis , Epigénesis Genética , Genisteína/uso terapéutico , Histona Metiltransferasas/genética , Histona Metiltransferasas/metabolismo , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , FN-kappa B/uso terapéutico , Osteoporosis/tratamiento farmacológico , Osteoporosis/genética , Osteoporosis/metabolismo , Ligando RANK/genética , Ligando RANK/metabolismo , Ligando RANK/uso terapéutico , Vitamina D/uso terapéutico
3.
Life Sci ; 302: 120655, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35598656

RESUMEN

AIMS: Inflammatory Bowel Disease is characterised by abdominal pain, diarrhoea, rectal bleeding and weight loss. Sometimes it may leads to severe health complications resulting in death of an individual. Current research efforts to highlight the role of melatonin in regulating EZH2, a master epigenetic regulator and its beneficiary effect in case of IBD management. MATERIAL METHODS: Murine macrophages (RAW 264.7) were treated with lipopolysaccharides (LPS) to activate them for generating inflammatory response to investigate efficacy of melatonin in-vitro models. Similarly, for developing in vivo models, Dextran sodium sulphate (36-50 kDa) was used. Evaluations of anti-inflammatory activities were carried out by nitrite assay, western blotting, q-PCR, immunofluorescence, and histological studies. KEY FINDINGS: Reduction of epigenetic target, EZH2 by melatonin significantly improves the clinical symptoms of dextran sodium sulphate induced colitis and may be implicated as a potential therapeutic target in IBD management. The present study evaluates the efficacy of melatonin by epigenetic regulation in IBD models. Down regulation of EZH2 by melatonin reduced the chemical induced inflammatory insults in in vitro and in vivo models. Exploration of molecular pathways has revealed interlink of EZH2 and NOS2, a hallmark of inflammation. Molecular mechanistic action of melatonin is attributed to inhibition of the expression and physical interaction of EZH2 and NOS2. SIGNIFICANCE: Our study highlights melatonin therapeutic effect via attenuating interaction between EZH2 and NOS2 which is beneficial in managing IBD treatment.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Melatonina , Animales , Ratones , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/genética , Sulfato de Dextran/toxicidad , Dextranos/metabolismo , Modelos Animales de Enfermedad , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Epigénesis Genética , Enfermedades Inflamatorias del Intestino/patología , Melatonina/farmacología , Melatonina/uso terapéutico , Óxido Nítrico Sintasa de Tipo II/metabolismo
5.
Phytomedicine ; 80: 153386, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33113500

RESUMEN

BACKGROUND: Overexpression of polycomb protein contributes to epigenetic repression in oral squamous cell carcinoma (OSCC) ensuing in poor prognosis and aggressive phenotype. Several plant-based compounds could help prevent epigenome alteration and cancer progression, but their low bioavailability limits their therapeutic activity. HYPOTHESIS: In this study, we have synthesized genistein nanoformulation (GLNPs) and evaluated its epigenetic regulation mechanism for selective apoptosis induction in OSCC. METHODS: Lactalbumin was used to prepare nanoformulation of Genistein. The mechanism of epigenetic regulation and selective apoptosis by Genistein loaded nanoparticles was studied in OSCC cell line JHU011 and fibroblast cell line L929 using immunofluorescence, Western blotting and ChIP-qPCR assay. RESULTS: We have found that GLNPs treatment selectively induced apoptosis in OSCC compared to the normal fibroblast cells. This selective effect in OSCC is achieved through enhanced reactive oxygen species (ROS) generation followed by Bax mitochondrial translocation and caspase 3 activation. Further, GLNPs induced withdrawal of epigenetic transcription repression through concurrent downregulation of the polycomb group proteins (PcG) Bmi 1 and EZH2 along with their successive targets, UbH2AK119 and H3K27me3, which have immense therapeutic implications in the treatment of OSCC. Last, we have established that GLNPs regulate EZH2expression through proteasomal mediated degradation and 3PK inhibition; 3PK protein was found physically linked with EZH2 protein and its promoter region (-1107 to -1002). This event indicates that 3PK might play some crucial role in EZH2 expression and epigenetic control of OSCC. Moreover, the formulation showed improved biodistribution, aqueous dispersibility and enhanced biocompatibility In-vivo. CONCLUSIONS: These results provide evidence that GLNPs may withdraw epigenetic transcriptional repression and selectively induce apoptosis in human oral squamous cell carcinoma.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Carcinoma de Células Escamosas/tratamiento farmacológico , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Genisteína/farmacología , Neoplasias de la Boca/tratamiento farmacológico , Animales , Antineoplásicos Fitogénicos/farmacocinética , Apoptosis/efectos de los fármacos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Epigénesis Genética/efectos de los fármacos , Genisteína/administración & dosificación , Genisteína/farmacocinética , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones Endogámicos BALB C , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Nanopartículas/administración & dosificación , Nanopartículas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
6.
J Mater Chem B ; 8(37): 8658-8670, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32844866

RESUMEN

Acute myeloid leukemia (AML), which is common in the elderly population, accounts for poor long-term survival with a high possibility of relapse. The associated lack of currently developed therapeutics is directing the search for new therapeutic targets relating to AML. EZH2 (Enhancer of Zeste Homolog 2) is a histone methyltransferase member of the polycomb-group (PcG) family, and its significant overexpression in AML means it has emerged as a potential epigenetic target. Here, we propose the human serum albumin (HSA) nanoparticle based delivery of small interfering RNA (siRNA), which can target EZH2-expressing genes in AML. EZH2 specific siRNA loaded in a polyethyleneimine (PEI) conjugated HSA nanocarrier can overcome the systemic instability of siRNA and precisely target the AML cell population for increased EZH2 gene silencing. A stable nanosized complex (HSANPs-PEI@EZH2siRNA), achieved via the electrostatic interaction of PEI and EZH2 siRNA, shows increased systemic stability and hemocompatibility, and enhanced EZH2 gene silencing activity in vitro, compared to conventional transfection reagents. HSANPs-PEI@EZH2siRNA-treated AML cells showed downregulated EZH2, which is associated with a reduced level of Bmi-1 protein, and H3K27me3 and H2AK119ub modification. The ubiquitin-mediated proteasomal degradation pathway plays a critical role in the downregulation of associated proteins following HSANPs-PEI@EZH2siRNA exposure to AML cells. c-Myb is the AML-responsive transcription factor that directly binds on the EZH2 promoter and was downregulated in HSANPs-PEI@EZH2siRNA-treated AML cells. The systemic exposure to HSANPs-PEI@EZH2siRNA of AML engrafted immunodeficient nude mice displayed efficient EZH2 gene silencing and a reduced AML cell population in peripheral blood and bone marrow. The present study demonstrates a non-viral siRNA delivery system for epigenetic targeting based superior anti-leukemic therapy.


Asunto(s)
Antineoplásicos/uso terapéutico , Portadores de Fármacos/química , Leucemia Mieloide Aguda/tratamiento farmacológico , Nanopartículas/química , ARN Interferente Pequeño/uso terapéutico , Animales , Regulación hacia Abajo , Portadores de Fármacos/toxicidad , Proteína Potenciadora del Homólogo Zeste 2/genética , Femenino , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Humanos , Leucemia Mieloide Aguda/genética , Ratones Endogámicos BALB C , Ratones Desnudos , Nanopartículas/toxicidad , Polietileneimina/química , Polietileneimina/toxicidad , ARN Interferente Pequeño/genética , Albúmina Sérica Humana/química , Albúmina Sérica Humana/toxicidad , Ensayos Antitumor por Modelo de Xenoinjerto
7.
ACS Appl Mater Interfaces ; 12(23): 25633-25644, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32453568

RESUMEN

Bmi1 is associated with advanced prognosis of acute myeloid leukemia (AML), and polyethylenimine (PEI)-stabilized Bmi1 siRNA-entrapped human serum albumin (HSA) nanocarriers (PEI@HSANCs) were used to protect siRNA from degradation and also to control epigenetic regulation-based AML therapy. The nanoform increased the transfection efficiency of Bmi1 siRNA through caveolae-mediated endocytosis and enhanced Bax translocation into the mitochondria. It enhanced the caspase 3-mediated apoptosis through the Bax activation and Bcl-2 inhibition. The molecular analysis reveals the downregulation of polycomb proteins, Bmi1 and EzH2, along with inhibition of H3K27me3 and H2AK119ub1. The signaling cascade revealed downregulation of Bmi1 through ubiquitin-mediated degradation and is reversed by a proteasome inhibitor. Further mechanistic studies established a crucial role of transcription factor, C-Myb and Bmi1, as its direct targets for maintenance and progression of AML. Chromatin immunoprecipitation (ChIP) assay confirmed Bmi1 as a direct target of C-Myb as it binds to promoter sequence of Bmi1 between -235 to +43 and -111 to +43. The in vivo studies performed in the AML xenograft model evidence a decrease in the population of leukemic stem cells marker (CD45+) and an increase in the myeloid differentiating marker expression (CD11b+) in the bone marrow after the Bmi1 siRNA nanoconjugated therapy. Activation of apoptotic pathways and withdrawal of epigenetic repression through a ubiquitin proteasomal pathway potentiating a novel antileukemic therapy were established.


Asunto(s)
Antineoplásicos/uso terapéutico , Portadores de Fármacos/química , Leucemia Mieloide Aguda/tratamiento farmacológico , Nanocompuestos/uso terapéutico , Complejo Represivo Polycomb 1/metabolismo , ARN Interferente Pequeño/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Femenino , Humanos , Ratones Endogámicos BALB C , Nanocompuestos/química , Complejo Represivo Polycomb 1/genética , Polietileneimina/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Albúmina Sérica Humana/química , Ubiquitinación/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Acta Biomater ; 109: 121-131, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32335311

RESUMEN

Wound healing remains a healthcare challenge in patients suffering from grave tissue damage due to burn injuries and severe medical conditions like diabetes and ischemia. A repeated wound dressing in such cases leads to tissue damage, which could further inflate the wound healing. It is also challenging to analyze the depth of wound bed in these conditions, which could affect the recovery period. To address this need, we have developed an injectable hydrogel from natural polysaccharide κ-carrageenan and a pigmented protein C-phycocyanin. C-phycocyanin has wound healing, antimicrobial, antioxidant and anti-inflammatory properties along with the In-vivo fluorescence imaging ability. Gelling property of κ-carrageenan could be utilized along with C-phycocyanin as an injectable and regenerative wound dressings matrix to monitor wound healing in real-time without upsetting the healing process. The hydrogel presented herein was built from ionic crosslinking of κ-carrageenan monomers along with C-phycocyanin, which provides an interconnected network of porous material with hydrophilic surface and mechanical stiffness. This porosity allows nutrients transportation and gaseous exchange across the wound healing site for the proliferation of various cells. Hydrogel material enhances the proliferation of dermal fibroblasts in vitro without inducing inflammation along with reducing the blood clotting time with no haemolysis. We have found that κ-carrageenan-C-phycocyanin (κ-CRG-C-Pc) hydrogel not only exhibit superior haemostatic capabilities in traumatic injury condition but also provide support for rapid wound healing. Overall, these findings demonstrate the potential of κ-carrageenan-C-phycocyanin hydrogels as a wound-healing and imaging platform towards accelerating tissue repair and real-time monitoring. STATEMENT OF SIGNIFICANCE: Blood clotting and inflammation are the most crucial stages of wound healing along with appropriate monitoring of the healing process. Thus, there is a need of system that could provide point-to-point care and monitoring in this multistage process. Here, we have introduced a self healing, injectable hydrogel system with in vivo imaging abilities from κ-carragenan and C-phycocyanin. C-phycocyanin improves the stability of κ-carragenan matrix and provide support to cellular adhesion, proliferation, and migration. Its anti-inflammatory response and rapid blood clotting ability further empower its applicability in critical medical conditions and wound recovery.


Asunto(s)
Antiinflamatorios/uso terapéutico , Carragenina/química , Hemostáticos/uso terapéutico , Hidrogeles/química , Ficocianina/uso terapéutico , Cicatrización de Heridas/efectos de los fármacos , Animales , Antiinflamatorios/química , Adhesión Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Colorantes Fluorescentes/química , Colorantes Fluorescentes/uso terapéutico , Cabras , Hemólisis/efectos de los fármacos , Hemostáticos/química , Hidrogeles/síntesis química , Inflamación/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos BALB C , Imagen Óptica , Ficocianina/química , Porosidad , Células RAW 264.7 , Ratas Wistar
9.
ACS Biomater Sci Eng ; 6(5): 3139-3153, 2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33463265

RESUMEN

Epigenetically regulated therapeutic intervention of cancer is an emerging era of research in the development of a promising therapy. Epigenetic changes are intrinsically reversible and providing the driving force to drug resistance in colorectal cancer (CRC). The regulation of polycomb group (PcG) proteins, BMI1 and EZH2, and the associated CRC progression hold promises for a novel treatment regime. The present study enlightens targeted photodynamic therapy (PDT) with potential photosensitizer hypericin nanocomposite in the development of epigenetic-based CRC therapy. We have synthesized hypericin-loaded transferrin nanoformulations (HTfNPs) overcoming the compromised hydrophobicity and poor bioavailability of the placebo drug. Targeted PDT with hypericin nanocomposite-induced BMI1 degradation assisted CRC retardation. In the present study, transferrin nanoparticles were reported to control the premature release of hypericin and improve its availability with better targeting at the disease site. Targeted intracellular internalization to colon cancer cells having a differential expression of transferrin receptors, in vivo biodistribution, stability, and pharmacokinetics provide promising applications in the nanodelivery system. Indeed, in vitro anticancer efficiency, cell cycle arrest at the G0/G1 phase, and elevated reactive oxygen species (ROS) generation confirm the anticancer effect of nanoformulation. In the exploration of mechanism, nanotherapeutic intervention by activation of PP2A, Caspase3 and inhibition of BMI1, EZH2, 3Pk, NFκB was evident. An exciting outcome of this study uncovered the camouflaged role of PP2A in the regulation of BMI1. PP2A mediates the ubiquitination/degradation of BMI1, which is revealed by changes in the physical interaction of PP2A and BMI1. Our study confirms the anticancer effect of HTfNP-assisted PDT by inducing PP2A-mediated BMI1 ubiquitination/degradation demonstrating an epigenetic-driven nanotherapeutic approach in CRC treatment.


Asunto(s)
Neoplasias Colorrectales , Nanopartículas , Fotoquimioterapia , Antracenos , Neoplasias Colorrectales/tratamiento farmacológico , Humanos , Perileno/análogos & derivados , Distribución Tisular , Transferrina
10.
Nucleic Acids Res ; 47(7): 3422-3433, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30759238

RESUMEN

The developmental asymmetry of fission yeast daughter cells derives from inheriting 'older Watson' versus 'older Crick' DNA strand from the parental cell, strands that are complementary but not identical with each other. A novel DNA strand-specific 'imprint', installed during DNA replication at the mating-type locus (mat1), imparts competence for cell type inter-conversion to one of the two chromosome replicas. The catalytic subunit of DNA Polymerase α (Polα) has been implicated in the imprinting process. Based on its known biochemical function, Polα might install the mat1 imprint during lagging strand synthesis. The nature of the imprint is not clear: it is either a nick or a ribonucleotide insertion. Our investigations do not support a direct role of Polα in nicking through putative endonuclease domains but confirm its indirect role in installing an alkali-labile moiety as the imprint. While ruling out the role of the primase subunit of Polα holoenzyme, we find that mutations in the Polα-recruitment and putative primase homology domain in Mcm10/Cdc23 abrogate the ribonucleotide imprint formation. These results, while confirming the ribonucleotide nature of the imprint suggest the possibility of a direct role of Mcm10/Cdc23 in installing it in cooperation with Polα and Swi1.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , ADN Polimerasa I/metabolismo , Replicación del ADN/genética , Genes del Tipo Sexual de los Hongos/genética , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Ribonucleótidos/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Dominio Catalítico , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , ADN Polimerasa I/química , ADN Polimerasa I/genética , ADN Primasa/química , ADN Primasa/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Mantenimiento de Minicromosoma/química , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...