Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Biotechnol ; 40(8): 1241-1249, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35681059

RESUMEN

Transplantation of B cells engineered ex vivo to secrete broadly neutralizing antibodies (bNAbs) has shown efficacy in disease models. However, clinical translation of this approach would require specialized medical centers, technically demanding protocols and major histocompatibility complex compatibility of donor cells and recipients. Here we report in vivo B cell engineering using two adeno-associated viral vectors, with one coding for Staphylococcus aureus Cas9 (saCas9) and the other for 3BNC117, an anti-HIV bNAb. After intravenously injecting the vectors into mice, we observe successful editing of B cells leading to memory retention and bNAb secretion at neutralizing titers of up to 6.8 µg ml-1. We observed minimal clustered regularly interspaced palindromic repeats (CRISPR)-Cas9 off-target cleavage as detected by unbiased CHANGE-sequencing analysis, whereas on-target cleavage in undesired tissues is reduced by expressing saCas9 from a B cell-specific promoter. In vivo B cell engineering to express therapeutic antibodies is a safe, potent and scalable method, which may be applicable not only to infectious diseases but also in the treatment of noncommunicable conditions, such as cancer and autoimmune disease.


Asunto(s)
Infecciones por VIH , VIH-1 , Animales , Anticuerpos Neutralizantes/genética , Linfocitos B , Anticuerpos ampliamente neutralizantes , Anticuerpos Anti-VIH/genética , Infecciones por VIH/terapia , Ratones , Staphylococcus aureus
2.
J Virol ; 96(6): e0175721, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35107373

RESUMEN

Emerging viruses impose global threats to animal and human populations and may bear novel genes with limited homology to known sequences, necessitating the development of novel approaches to infer and test protein functions. This challenge is dramatically evident in tilapia lake virus (TiLV), an emerging "orthomyxo-like" virus that threatens the global tilapia aquaculture and food security of millions of people. The majority of TiLV proteins have no homology to known sequences, impeding functionality assessments. Using a novel bioinformatics approach, we predicted that TiLV's Protein 4 encodes the nucleoprotein, a factor essential for viral RNA replication. Multiple methodologies revealed the expected properties of orthomyxoviral nucleoproteins. A modified yeast three-hybrid assay detected Protein 4-RNA interactions, which were independent of the RNA sequence, and identified specific positively charged residues involved. Protein 4-RNA interactions were uncovered by R-DeeP and XRNAX methodologies. Immunoelectron microscopy found that multiple Protein 4 copies localized along enriched ribonucleoproteins. TiLV RNA from cells and virions coimmunoprecipitated with Protein 4. Immunofluorescence microscopy detected Protein 4 in the cytoplasm and nuclei, and nuclear Protein 4 increased upon CRM1 inhibition, suggesting CRM1-dependent nuclear export of TiLV RNA. Together, these data reveal TiLV's nucleoprotein and highlight the ability to infer protein functionality, including novel RNA-binding proteins, in emerging pathogens. These are important in light of the expected discovery of many unknown viruses and the zoonotic potential of such pathogens. IMPORTANCE Tilapia is an important source of dietary protein, especially in developing countries. Massive losses of tilapia were identified worldwide, risking the food security of millions of people. Tilapia lake virus (TiLV) is an emerging pathogen responsible for these disease outbreaks. TiLV's genome encodes 10 major proteins, 9 of which show no homology to other known viral or cellular proteins, hindering functionality assessment of these proteins. Here, we describe a novel bioinformatics approach to infer the functionality of TiLV proteins, which predicted Protein 4 as the nucleoprotein, a factor essential for viral RNA replication. We provided experimental support for this prediction by applying multiple molecular, biochemical, and imaging approaches. Overall, we illustrate a strategy for functional analyses in viral discovery. The strategy is important in light of the expected discovery of many unknown viruses and the zoonotic potential of such pathogens.


Asunto(s)
Nucleoproteínas , Virus ARN , Tilapia , Animales , Enfermedades de los Peces/virología , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Infecciones por Virus ARN/virología , Virus ARN/clasificación , Virus ARN/genética , Virus ARN/patogenicidad , ARN Viral/genética , Tilapia/genética
4.
Nat Med ; 27(8): 1379-1384, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34127854

RESUMEN

The BNT162b2 mRNA vaccine is highly effective against SARS-CoV-2. However, apprehension exists that variants of concern (VOCs) may evade vaccine protection, due to evidence of reduced neutralization of the VOCs B.1.1.7 and B.1.351 by vaccine sera in laboratory assays. We performed a matched cohort study to examine the distribution of VOCs in infections of BNT162b2 mRNA vaccinees from Clalit Health Services (Israel) using viral genomic sequencing, and hypothesized that if vaccine effectiveness against a VOC is reduced, its proportion among breakthrough cases would be higher than in unvaccinated controls. Analyzing 813 viral genome sequences from nasopharyngeal swabs, we showed that vaccinees who tested positive at least 7 days after the second dose were disproportionally infected with B.1.351, compared with controls. Those who tested positive between 2 weeks after the first dose and 6 days after the second dose were disproportionally infected by B.1.1.7. These findings suggest reduced vaccine effectiveness against both VOCs within particular time windows. Our results emphasize the importance of rigorously tracking viral variants, and of increasing vaccination to prevent the spread of VOCs.


Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , COVID-19/virología , ARN Mensajero/genética , SARS-CoV-2/patogenicidad , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Vacuna BNT162 , COVID-19/epidemiología , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad
5.
Mol Biol Evol ; 38(2): 575-588, 2021 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-32986832

RESUMEN

RNA viruses are responsible for some of the worst pandemics known to mankind, including outbreaks of Influenza, Ebola, and COVID-19. One major challenge in tackling RNA viruses is the fact they are extremely genetically diverse. Nevertheless, they share common features that include their dependence on host cells for replication, and high mutation rates. We set out to search for shared evolutionary characteristics that may aid in gaining a broader understanding of RNA virus evolution, and constructed a phylogeny-based data set spanning thousands of sequences from diverse single-stranded RNA viruses of animals. Strikingly, we found that the vast majority of these viruses have a skewed nucleotide composition, manifested as adenine rich (A-rich) coding sequences. In order to test whether A-richness is driven by selection or by biased mutation processes, we harnessed the effects of incomplete purifying selection at the tips of virus phylogenies. Our results revealed consistent mutational biases toward U rather than A in genomes of all viruses. In +ssRNA viruses, we found that this bias is compensated by selection against U and selection for A, which leads to A-rich genomes. In -ssRNA viruses, the genomic mutational bias toward U on the negative strand manifests as A-rich coding sequences, on the positive strand. We investigated possible reasons for the advantage of A-rich sequences including weakened RNA secondary structures, codon usage bias, and selection for a particular amino acid composition, and conclude that host immune pressures may have led to similar biases in coding sequence composition across very divergent RNA viruses.


Asunto(s)
Mutación , Virus ARN/genética , ARN Viral/genética , Selección Genética , Animales , Codón , Análisis Mutacional de ADN , Bases de Datos Factuales , Evolución Molecular , Genoma Viral , Humanos , Nucleótidos , Filogenia , SARS-CoV-2/genética
6.
Nat Commun ; 11(1): 5518, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-33139704

RESUMEN

Full genome sequences are increasingly used to track the geographic spread and transmission dynamics of viral pathogens. Here, with a focus on Israel, we sequence 212 SARS-CoV-2 sequences and use them to perform a comprehensive analysis to trace the origins and spread of the virus. We find that travelers returning from the United States of America significantly contributed to viral spread in Israel, more than their proportion in incoming infected travelers. Using phylodynamic analysis, we estimate that the basic reproduction number of the virus was initially around 2.5, dropping by more than two-thirds following the implementation of social distancing measures. We further report high levels of transmission heterogeneity in SARS-CoV-2 spread, with between 2-10% of infected individuals resulting in 80% of secondary infections. Overall, our findings demonstrate the effectiveness of social distancing measures for reducing viral spread.


Asunto(s)
Betacoronavirus/genética , Enfermedades Transmisibles Importadas/virología , Infecciones por Coronavirus/transmisión , Genoma Viral/genética , Neumonía Viral/transmisión , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Secuencia de Bases , Número Básico de Reproducción/estadística & datos numéricos , COVID-19 , Niño , Preescolar , Enfermedades Transmisibles Importadas/epidemiología , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/prevención & control , Femenino , Humanos , Lactante , Recién Nacido , Israel/epidemiología , Masculino , Persona de Mediana Edad , Pandemias/prevención & control , Filogenia , Neumonía Viral/epidemiología , Neumonía Viral/prevención & control , Distancia Psicológica , ARN Viral/genética , SARS-CoV-2 , Análisis de Secuencia de ARN , Estados Unidos , Adulto Joven
7.
PLoS Pathog ; 16(11): e1009029, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33147296

RESUMEN

Genetic diversity is the fuel of evolution and facilitates adaptation to novel environments. However, our understanding of what drives differences in the genetic diversity during the early stages of viral infection is somewhat limited. Here, we use ultra-deep sequencing to interrogate 43 clinical samples taken from early infections of the human-infecting viruses HIV, RSV and CMV. Hundreds to thousands of virus templates were sequenced per sample, allowing us to reveal dramatic differences in within-host genetic diversity among virus populations. We found that increased diversity was mostly driven by presence of multiple divergent genotypes in HIV and CMV samples, which we suggest reflect multiple transmitted/founder viruses. Conversely, we detected an abundance of low frequency hyper-edited genomes in RSV samples, presumably reflecting defective virus genomes (DVGs). We suggest that RSV is characterized by higher levels of cellular co-infection, which allow for complementation and hence elevated levels of DVGs.


Asunto(s)
Infecciones por Citomegalovirus/virología , Citomegalovirus/genética , Variación Genética , Infecciones por VIH/virología , VIH-1/genética , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitiales Respiratorios/genética , Genotipo , Humanos
8.
Sci Rep ; 9(1): 2606, 2019 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-30796243

RESUMEN

Respiratory virus infections are very common. Such infections impose an enormous economic burden and occasionally lead to death. Furthermore, every few decades, respiratory virus pandemics emerge, putting the entire world population at risk. Thus, there is an urgent need to quickly and precisely identify the infecting agent in a clinical setting. However, in many patients with influenza-like symptoms (ILS) the identity of the underlying pathogen remains unknown. In addition, it takes time and effort to individually identify the virus responsible for the ILS. Here, we present a new next-generation sequencing (NGS)-based method that enables rapid and robust identification of pathogens in a pool of clinical samples without the need for specific primers. The method is aimed at rapidly uncovering a potentially common pathogen affecting many samples with an unidentified source of disease.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Infecciones del Sistema Respiratorio/diagnóstico , Infecciones del Sistema Respiratorio/virología , Virosis/diagnóstico , Virosis/genética , Bacterias/aislamiento & purificación , Humanos , Gripe Humana/diagnóstico , Gripe Humana/genética , Reproducibilidad de los Resultados , Estaciones del Año , Virus/genética , Virus/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...