Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Eur Biophys J ; 49(8): 791-798, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32844285

RESUMEN

The 6-deoxy-6-aminocelluloses-or "aminocelluloses"-are a class of synthetic natural cellulose derivatives which are mostly aqueous soluble and have excellent film-forming properties. Recent studies have connected these properties at the molecular level with protein-like self-associative behaviour for a range of aminocelluloses including a 6-deoxy-6-(ω-aminoethyl) aminocellulose AEA-1 with the association being a two-stage process-a reversible oligomerisation followed by further (semi-reversible) aggregation into larger structures. Here, we synthesise and compare a new 6-deoxy-6-(ω-aminoethyl) aminocellulose AEA-1' with different degree of substitution with one with further alkyl derivatisation, namely 6-deoxy-6-(ω-hydroxyethyl) aminocellulose HEA-1'. As with AEA-1, sedimentation velocity and sedimentation equilibrium in the analytical ultracentrifuge still show a two-stage process for both AEA-1' and HEA-1', with the latter giving higher molar masses. The consequences of these properties for use as consolidants for archaeological wood are considered.


Asunto(s)
Arqueología , Celulosa/química , Madera/química , Relación Estructura-Actividad , Ultracentrifugación
2.
Eur Biophys J ; 49(8): 781-789, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32845350

RESUMEN

The Oseberg ship is one of the most important archaeological testimonies of the Vikings. After excavation in 1904, the wooden gravegoods were conserved using alum salts. This resulted in extreme degradation of a number of the objects a hundred years later through acid depolymerisation of cellulose and lignin. The fragile condition of the artefacts requires a reconsolidation which has to be done avoiding water as solvent. We synthesized tert-butyldimethylsilyl (TBDMS) chitosan which is soluble in a 50:50 solution of ethyl acetate and toluene. Measurement of its molecular weight, to anticipate its penetration, provided a challenge as the density difference of the polymer and solvent was too small to provide adequate solute redistribution under a centrifugal field, so a two-stage process was implemented (i) determination of the weight-average molar mass of the aqueous soluble activated precursor, chitosan mesylate, Mw,mc using sedimentation equilibrium with the SEDFIT-MSTAR algorithm, and determination of the degree of polymerisation DP; (ii) measurement of the average degree of substitution DSTBDMS of the TBDMS group on each chitosan monosaccharide monomer unit using NMR, to augment the Mw,mc value to give the molar mass of the TBDMS-chitosan. For the preparation, we find Mw = 9.8 kg·mol-1, which is within the acceptable limit for penetration and consolidation of degraded wood. Future work will test this on archaeological wood from different sources.


Asunto(s)
Arqueología , Quitosano/análogos & derivados , Conservación de los Recursos Naturales , Compuestos de Organosilicio/síntesis química , Ultracentrifugación , Madera/química , Técnicas de Química Sintética , Quitosano/síntesis química , Quitosano/química , Peso Molecular , Compuestos de Organosilicio/química
3.
Sci Rep ; 7: 46481, 2017 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-28447666

RESUMEN

Waterlogged archaeological wood is often in need of consolidation prior to drying to prevent shrinkage and cracking of the object. There is a need for new greener materials (than for example polyethylene glycol) and methods for consolidation to be developed. The use of wood-based components could provide good interaction between the consolidant and the remaining wood structure and would also support a shift away from fossil fuel-based materials to those with more sustainable sources. Based on this, lignin-like structures have been investigated for their ability to consolidate waterlogged archaeological wood. The in situ formation of a lignin-like material has been carried out using isoeugenol polymerised by horse radish peroxidase in aqueous solution. The formation of the oligomeric/polymeric materials within the wood following this reaction has been determined by Attenuated Total Reflectance Fourier Transform Infra Red (ATR-FTIR) spectroscopy. The oligomers remaining in solution have been characterised by ATR-FTIR and nuclear magnetic resonance (NMR) spectroscopy as well as analytical ultracentrifugation, showing that they have a weight average Mw of 0.4-0.9 kDa and a lignin-like structure rich in the ß-5' moiety. Therefore, this approach is proposed as a basis to further develop a green consolidation method for waterlogged archaeological wood.

4.
Anal Chim Acta ; 896: 177-89, 2015 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-26482002

RESUMEN

Modern oil paints, introduced at the beginning of the 20th century, differ from those classically used in antiquity in their chemical and compositional features. The main ingredients were still traditional drying oils, often used in mixtures with less expensive oils and added with several classes of additives. Consequently, detailed lipid profiling, together with the study of lipid degradation processes, is essential for the knowledge and the conservation of paint materials used in modern and contemporary art. A multi-analytical approach based on mass spectrometry was used for the study of original paint materials from Munch's atelier, owned by the Munch Museum in Oslo. The results obtained in the analysis of paint tubes were compared with those obtained by characterizing a paint sample collected from one of the artist's sketches for the decoration of the Festival Hall of the University of Oslo (1909-1916). Py-GC/MS was used as screening method to evaluate the presence of lipid, proteic or polysaccaridic materials. GC/MS after hydrolysis and derivatization allowed us to determine the fatty acid profile of the paint tubes, and to evaluate the molecular changes associated to curing and ageing. The determination of the fatty acid profile is not conclusive for the characterization of complex mixtures of lipid materials, thus the characterization of the triglyceride profiles was performed using an analytical procedure based on HPLC-ESI-Q-ToF. This paper describes the first application of HPLC-ESI-Q-ToF for the acquisition of the triglyceride profile in a modern paint sample, showing the potentialities of liquid chromatography in the field of lipid characterization in modern paint materials. Moreover, our results highlighted that the application of this approach can contribute to address dating, authenticity and conservation issues relative to modern and contemporary artworks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...