Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Neuroimage Clin ; 41: 103577, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38377722

RESUMEN

Degeneration in the substantia nigra (SN) pars compacta (SNc) underlies motor symptoms in Parkinson's disease (PD). Currently, there are no neuroimaging biomarkers that are sufficiently sensitive, specific, reproducible, and accessible for routine diagnosis or staging of PD. Although iron is essential for cellular processes, it also mediates neurodegeneration. MRI can localize and quantify brain iron using magnetic susceptibility, which could potentially provide biomarkers of PD. We measured iron in the SNc, SN pars reticulata (SNr), total SN, and ventral tegmental area (VTA), using quantitative susceptibility mapping (QSM) and R2* relaxometry, in PD patients and age-matched healthy controls (HCs). PD patients, diagnosed within five years of participation and HCs were scanned at 3T (22 PD and 23 HCs) and 7T (17 PD and 21 HCs) MRI. Midbrain nuclei were segmented using a probabilistic subcortical atlas. QSM and R2* values were measured in midbrain subregions. For each measure, groups were contrasted, with Age and Sex as covariates, and receiver operating characteristic (ROC) curve analyses were performed with repeated k-fold cross-validation to test the potential of our measures to classify PD patients and HCs. Statistical differences of area under the curves (AUCs) were compared using the Hanley-MacNeil method (QSM versus R2*; 3T versus 7T MRI). PD patients had higher QSM values in the SNc at both 3T (padj = 0.001) and 7T (padj = 0.01), but not in SNr, total SN, or VTA, at either field strength. No significant group differences were revealed using R2* in any midbrain region at 3T, though increased R2* values in SNc at 7T MRI were marginally significant in PDs compared to HCs (padj = 0.052). ROC curve analyses showed that SNc iron measured with QSM, distinguished early PD patients from HCs at the single-subject level with good diagnostic accuracy, using 3T (mean AUC = 0.83, 95 % CI = 0.82-0.84) and 7T (mean AUC = 0.80, 95 % CI = 0.79-0.81) MRI. Mean AUCs reported here are from averages of tests in the hold-out fold of cross-validated samples. The Hanley-MacNeil method demonstrated that QSM outperforms R2* in discriminating PD patients from HCs at 3T, but not 7T. There were no significant differences between 3T and 7T in diagnostic accuracy of QSM values in SNc. This study highlights the importance of segmenting midbrain subregions, performed here using a standardized atlas, and demonstrates high accuracy of SNc iron measured with QSM at 3T MRI in identifying early PD patients. QSM measures of SNc show potential for inclusion in neuroimaging diagnostic biomarkers of early PD. An MRI diagnostic biomarker of PD would represent a significant clinical advance.


Asunto(s)
Enfermedad de Parkinson , Porción Compacta de la Sustancia Negra , Humanos , Porción Compacta de la Sustancia Negra/diagnóstico por imagen , Sustancia Negra/diagnóstico por imagen , Enfermedad de Parkinson/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Hierro , Biomarcadores
2.
Neuroimage Clin ; 40: 103519, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37797434

RESUMEN

The loss of dopamine in the striatum underlies motor symptoms of Parkinson's disease (PD). Rapid eye movement sleep behaviour disorder (RBD) is considered prodromal PD and has shown similar neural changes in the striatum. Alterations in brain iron suggest neurodegeneration; however, the literature on striatal iron has been inconsistent in PD and scant in RBD. Toward clarifying pathophysiological changes in PD and RBD, and uncovering possible biomarkers, we imaged 26 early-stage PD patients, 16 RBD patients, and 39 age-matched healthy controls with 3 T MRI. We compared mean susceptibility using quantitative susceptibility mapping (QSM) in the standard striatum (caudate, putamen, and nucleus accumbens) and tractography-parcellated striatum. Diffusion MRI permitted parcellation of the striatum into seven subregions based on the cortical areas of maximal connectivity from the Tziortzi atlas. No significant differences in mean susceptibility were found in the standard striatum anatomy. For the parcellated striatum, the caudal motor subregion, the most affected region in PD, showed lower iron levels compared to healthy controls. Receiver operating characteristic curves using mean susceptibility in the caudal motor striatum showed a good diagnostic accuracy of 0.80 when classifying early-stage PD from healthy controls. This study highlights that tractography-based parcellation of the striatum could enhance sensitivity to changes in iron levels, which have not been consistent in the PD literature. The decreased caudal motor striatum iron was sufficiently sensitive to PD, but not RBD. QSM in the striatum could contribute to development of a multivariate or multimodal biomarker of early-stage PD, but further work in larger datasets is needed to confirm its utility in prodromal groups.


Asunto(s)
Enfermedad de Parkinson , Trastorno de la Conducta del Sueño REM , Humanos , Trastorno de la Conducta del Sueño REM/diagnóstico por imagen , Enfermedad de Parkinson/diagnóstico por imagen , Hierro , Cuerpo Estriado/diagnóstico por imagen , Encéfalo
3.
Mult Scler Relat Disord ; 79: 105021, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37801955

RESUMEN

BACKGROUND: Persons with Multiple Sclerosis (PwMS) have a higher rate of anxiety and depression than the general population. Depression has been associated with clinical relapses; temporal lesions were shown to predict depression severity. Anxiety is considerably understudied. The role of MS lesions in the limbic system is also understudied, partly due to difficulties identifying limbic lesions on standard 1.5 and 3 Tesla MRI. METHODS: This is a retrospective study of 23 PwMS who underwent 7T MRI on the same day as completing the Hospital Anxiety and Depression Scale (HADS). MRI was performed on a Siemens 7T MRI Plus and an 8-channel transmit coil with 32 receiver channels operating in pTx mode. MP2RAGE and DIR-SPACE sequences were analyzed to determine the number of lesions within the limbic system. RESULTS: The median number of lesions in the limbic system was 2.0 (range 0-7). When comparing the presence or absence of lesions in the limbic system, there was a significant relationship with anxiety (X2 (1, N = 23)=4.44, p = 0.035), but not for depression. CONCLUSION: Although only a small sample size, this study provides preliminary evidence that lesions in the limbic system are associated with the presence of anxiety in PwMS. This relationship warrants further investigation.


Asunto(s)
Esclerosis Múltiple , Humanos , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Estudios Retrospectivos , Ansiedad/epidemiología , Trastornos de Ansiedad/complicaciones , Sistema Límbico/diagnóstico por imagen , Sistema Límbico/patología , Depresión/epidemiología
4.
Neuroimage ; 227: 117631, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33316391

RESUMEN

High-resolution functional MRI studies have become a powerful tool to non-invasively probe the sub-millimeter functional organization of the human cortex. Advances in MR hardware, imaging techniques and sophisticated post-processing methods have allowed high resolution fMRI to be used in both the clinical and academic neurosciences. However, consensus within the community regarding the use of gradient echo (GE) or spin echo (SE) based acquisition remains largely divided. On one hand, GE provides a high temporal signal-to-noise ratio (tSNR) technique sensitive to both the macro- and micro-vascular signal while SE based methods are more specific to microvasculature but suffer from lower tSNR and specific absorption rate limitations, especially at high field and with short repetition times. Fortunately, the phase of the GE-EPI signal is sensitive to vessel size and this provides a potential avenue to reduce the macrovascular weighting of the signal (phase regression, Menon 2002). In order to determine the efficacy of this technique at high-resolution, phase regression was applied to GE-EPI timeseries and compared to SE-EPI to determine if GE-EPI's specificity to the microvascular compartment improved. To do this, functional data was collected from seven subjects on a neuro-optimized 7 T system at 800 µm isotropic resolution with both GE-EPI and SE-EPI while observing an 8 Hz contrast reversing checkerboard. Phase data from the GE-EPI was used to create a microvasculature-weighted time series (GE-EPI-PR). Anatomical imaging (MP2RAGE) was also collected to allow for surface segmentation so that the functional results could be projected onto a surface. A multi-echo gradient echo sequence was collected and used to identify venous vasculature. The GE-EPI-PR surface activation maps showed a high qualitative similarity with SE-EPI and also produced laminar activity profiles similar to SE-EPI. When the GE-EPI and GE-EPI-PR distributions were compared to SE-EPI it was shown that GE-EPI-PR had similar distribution characteristics to SE-EPI (p < 0.05) across the top 60% of cortex. Furthermore, it was shown that GE-EPI-PR has a higher contrast-to-noise ratio (0.5 ± 0.2, mean ± std. dev. across layers) than SE-EPI (0.27 ± 0.07) demonstrating the technique has higher sensitivity than SE-EPI. Taken together this evidence suggests phase regression is a useful method in low SNR studies such as high-resolution fMRI.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Corteza Visual/diagnóstico por imagen , Adulto , Mapeo Encefálico/métodos , Imagen Eco-Planar/métodos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Relación Señal-Ruido , Adulto Joven
5.
eNeuro ; 5(5)2018.
Artículo en Inglés | MEDLINE | ID: mdl-30713997

RESUMEN

Cerebral palsy (CP) is a common pediatric neurodevelopmental disorder, frequently resulting in motor and developmental deficits and often accompanied by cognitive impairments. A regular pathobiological hallmark of CP is oligodendrocyte maturation impairment resulting in white matter (WM) injury and reduced axonal myelination. Regeneration therapies based on cell replacement are currently limited, but neural precursor cells (NPCs), as cellular support for myelination, represent a promising regeneration strategy to treat CP, although the transplantation parameters (e.g., timing, dosage, mechanism) remain to be determined. We optimized a hemiplegic mouse model of neonatal hypoxia-ischemia that mirrors the pathobiological hallmarks of CP and transplanted NPCs into the corpus callosum (CC), a major white matter structure impacted in CP patients. The NPCs survived, engrafted, and differentiated morphologically in male and female mice. Histology and MRI showed repair of lesioned structures. Furthermore, electrophysiology revealed functional myelination of the CC (e.g., restoration of conduction velocity), while cylinder and CatWalk tests demonstrated motor recovery of the affected forelimb. Endogenous oligodendrocytes, recruited in the CC following transplantation of exogenous NPCs, are the principal actors in this recovery process. The lack of differentiation of the transplanted NPCs is consistent with enhanced recovery due to an indirect mechanism, such as a trophic and/or "bio-bridge" support mediated by endogenous oligodendrocytes. Our work establishes that transplantation of NPCs represents a viable therapeutic strategy for CP treatment, and that the enhanced recovery is mediated by endogenous oligodendrocytes. This will further our understanding and contribute to the improvement of cellular therapeutic strategies.


Asunto(s)
Diferenciación Celular/fisiología , Células-Madre Neurales/trasplante , Oligodendroglía/citología , Recuperación de la Función/fisiología , Animales , Modelos Animales de Enfermedad , Hipoxia-Isquemia Encefálica/fisiopatología , Ratones Endogámicos C57BL , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA