RESUMEN
Introduction: This study investigated the effects of intragastric administration of apelin-13 on the secretion of critical pancreatic hormones in a cohort of three-week-old Wistar rats. The research aimed to uncover apelin's modulatory roles in endocrine interactions dictating metabolic homeostasis during early life. Material and Methods: Rats were randomly assigned to control or experimental groups, receiving apelin-13 or saline for 14 days. The study population consisted of three-week-old Wistar rats of both sexes, weighing between 20 and 25 grams. Histological examination, analysis of variance and t-tests were employed to assess significant differences. Results: Distinctive alterations in large islet morphology were observed, indicating a notable reduction in size. Additionally, an increase in alpha- and beta-cell density within specific islet sizes was noted, suggesting significant changes in cell populations. The study found a substantial increase in mitotic activity and a decrease in apoptosis in small and medium-sized islets post apelin-13 administration, indicating its potential role in regulating cell survival and proliferation. Conclusion: The notable reduction in large islet size coupled with increased alpha and beta cell density implies a targeted impact of apelin-13 on pancreatic cell dynamics. Also, the observed increase in mitotic activity and decrease in apoptosis in small and medium-sized islets suggest its potential regulatory role in cell survival and proliferation within the pancreatic microenvironment.
RESUMEN
The present study tried to clarify if mumefural would prevent hyperglycemia, one of the typical symptoms of type 2 diabetes mellitus (T2DM), since mumefural is an extract from Japanese apricots preventing hyperglycemia. To clarify if mumefural would prevent T2DM pathogenesis, we used Otsuka Long-Evans Tokushima fatty (OLETF) rats, T2DM model. Mumefural diminished hyperglycemia, HOMA-IR and plasma triglyceride concentration in OLETF rats under fasting conditions. In addition, mumefural elevated protein expression of sodium-coupled monocarboxylate transporter 1 (SMCT1) in the distal colon participating in absorption of weak organic acids, which behave as bases but not acids after absorption into the body. Mumefural also increased the interstitial fluid pH around the brain hippocampus lowered in OLETF rats compared with non-T2DM LETO rats used as control for OLETF rats. Amyloid-beta accumulation in the brain decreased in accordance with the pH elevation. On the one hand, mumefural didn't affect plasma concentrations of glucagon, GLP-1, GIP or PYY under fasting conditions. Taken together, these observations indicate that: 1) mumefural would be a useful functional food improving hyperglycemia, insulin resistance and the lowered interstitial fluid pH in T2DM; 2) the interstitial fluid pH would be one of key factors influencing the accumulation of amyloid-beta.
Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperglucemia , Resistencia a la Insulina , Ratas , Animales , Ratas Endogámicas OLETF , Glucemia/metabolismo , Insulina , Líquido Extracelular/metabolismo , Encéfalo/metabolismo , Concentración de Iones de HidrógenoRESUMEN
The inhibitory action of the secondary bile acid lithocholic acid (LCA) on neurally evoked Cl-/HCO3- secretion was investigated using the Ussing-chambered mucosal-submucosal preparation from the rat distal colon. Electrical field stimulation (EFS) evoked cholinergic and noncholinergic secretory responses in the rat distal colon. The responses were almost completely blocked by TTX (10-6 M) but not atropine (10-5 M) or hexamethonium (10-4 M). The selective antagonist for VIP receptor 1 (VPAC1) greatly reduced the EFS-evoked response. Thus, the rat distal colon may be predominantly innervated by noncholinergic VIP secretomotor neurons. Basolateral addition of 6 × 10-5 M LCA inhibited the EFS-evoked response. The inhibitory action of LCA was partly rescued by the Y2R antagonist BIIE0246. The bile acid receptor TGR5 agonist INT-777 mimicked the LCA-induced inhibitory action. Immunohistochemical staining showed the colocalization of TGR5 and PYY on L cells. TGR5 immunoreactivity was also found in VIP-immunoreactive submucosal neurons which also expressed the PYY receptor, Y2R. These results suggest that LCA inhibits neurally evoked Cl-/HCO3- secretion through the activation of TGR5 on L cells and cholinergic- and VIP-secretomotor neurons in the submucosal plexus. Furthermore, the inhibitory mechanism may involve TGR5-stimulated PYY release from L cells and Y2R activation in VIP-secretomotor neurons.
Asunto(s)
Ácidos y Sales Biliares , Ácido Litocólico , Ratas , Animales , Ácido Litocólico/farmacología , Ácido Litocólico/metabolismo , Mucosa Intestinal/metabolismo , Cloruros/metabolismo , Transporte Iónico , Colon/metabolismo , Colinérgicos/metabolismoRESUMEN
Xenin-25 has a variety of physiological functions in the gastrointestinal tract, including ion transport and motility. Xenin-25 and neurotensin show sequence homology, especially near their C-terminal regions. The sequence similarity between xenin-25 and neurotensin indicates that the effects of xenin-25 is mediated by the neurotensin receptor but some biological actions of xenin-25 are independent. We have previously reported that xenin-25 modulates intestinal ion transport and colonic smooth muscle activity. However, minimal biological domain of xenin-25 to induce ion transport was not clear. To improve the mechanistic understanding of xenin-25 and to gain additional insights into the functions of xenin-25, the present study was designed to determine the minimal biological domain of xenin-25 required for ion transport in the rat ileum using various truncated xenin fragments and analogues in an Ussing chamber system. The present results demonstrate that the minimum biological domain of xenin-25 to induce Cl-/HCO3- secretion in the ileum contains the C-terminal pentapeptide. Furthermore, Arg at position 21 is important to retain the biological activity of xenin-25 and induces Cl-/HCO3- secretion in the rat ileum.
Asunto(s)
Aniones/metabolismo , Íleon/metabolismo , Neurotensina/metabolismo , Animales , Íleon/efectos de los fármacos , Masculino , Neurotensina/análogos & derivados , Neurotensina/genética , Neurotensina/farmacología , Dominios Proteicos , Pirazoles/farmacología , Quinolinas/farmacología , Ratas Sprague-Dawley , Receptores de Neurotensina/antagonistas & inhibidoresRESUMEN
Xenin25 has a variety of physiological functions in the Gastrointestinal (GI) tract, including ion transport and motility. However, the motility responses in the colon induced by Xenin25 remain poorly understood. Therefore, the effect of Xenin25 on the spontaneous circular muscle contractions of the rat distal colon was investigated using organ bath chambers and immunohistochemistry. Xenin25 induced the inhibition followed by postinhibitory spontaneous contractions with a higher frequency in the rat distal colon. This inhibitory effect of Xenin25 was significantly suppressed by TTX but not by atropine. The inhibitory time (the duration of inhibition) caused by Xenin25 was shortened by the NTSR1 antagonist SR48692, the NK1R antagonist CP96345, the VPAC2 receptor antagonist PG99-465, the nitric oxide-sensitive guanylate-cyclase inhibitor ODQ, and the Ca2+ -dependent K+ channel blocker apamin. The higher frequency of postinhibitory spontaneous contractions induced by Xenin25 was also attenuated by ODQ and apamin. SP-, NOS-, and VIP-immunoreactive neurons were detected in the myenteric plexus (MP) of the rat distal colon. Small subsets of the SP-positive neurons were also Calbindin positive. Most of the VIP-positive neurons were also NOS positive, and small subsets of the NK1R-positive neurons were also VIP positive. Based on the present results, we propose the following mechanism. Xenin25 activates neuronal NTSR1 on the SP neurons of IPANs, and transmitters from the VIP and apamin-sensitive NO neurons synergistically inhibit the spontaneous circular muscle contractions via NK1R. Subsequently, the postinhibitory spontaneous contractions are induced by the offset of apamin-sensitive NO neuron activation via the interstitial cells of Cajal. In addition, Xenin25 also activates the muscular NTSR1 to induce relaxation. Thus, Xenin25 is considered to be an important modulator of post prandial circular muscle contraction of distal colon since the release of Xenin25 from enteroendocrine cells is stimulated by food intake.
Asunto(s)
Colon/inervación , Sistema Nervioso Entérico/efectos de los fármacos , Fármacos Gastrointestinales/farmacología , Motilidad Gastrointestinal/efectos de los fármacos , Contracción Muscular/efectos de los fármacos , Músculo Esquelético/inervación , Neurotensina/farmacología , Animales , Sistema Nervioso Entérico/metabolismo , Técnicas In Vitro , Masculino , Inhibición Neural/efectos de los fármacos , Neuronas Nitrérgicas/efectos de los fármacos , Neuronas Nitrérgicas/metabolismo , Ratas Sprague-Dawley , Receptores de Neurotensina/metabolismo , Sustancia P/metabolismo , Péptido Intestinal Vasoactivo/metabolismoRESUMEN
The microbiota-gut-brain axis transmits bidirectional communication between the gut and the central nervous system and links the emotional and cognitive centers of the brain with peripheral gut functions. This communication occurs along the axis via local, paracrine, and endocrine mechanisms involving a variety of gut-derived peptide/amine produced by enteroendocrine cells. Neural networks, such as the enteric nervous system, and the central nervous system, including the autonomic nervous system, also transmit information through the microbiota-gut-brain axis. Recent advances in research have described the importance of the gut microbiota in influencing normal physiology and contributing to disease. We are only beginning to understand this bidirectional communication system. In this review, we summarize the available data supporting the existence of these interactions, highlighting data related to the contribution of enteroendocrine cells and the enteric nervous system as an interface between the gut microbiota and brain.
Asunto(s)
Encéfalo/fisiología , Sistema Nervioso Central/fisiología , Sistema Nervioso Entérico/fisiología , Microbioma Gastrointestinal/fisiología , Animales , Ansiedad/complicaciones , Ácidos y Sales Biliares/química , Depresión/complicaciones , Células Enteroendocrinas/metabolismo , Tracto Gastrointestinal/microbiología , Humanos , Inmunohistoquímica , Ligandos , Modelos BiológicosRESUMEN
Lipopolysaccharides (LPS) are potent pro-inflammatory molecules that enter the systemic circulation from the intestinal lumen by uncertain mechanisms. We investigated these mechanisms and the effect of exogenous glucagon-like peptide-2 (GLP-2) on LPS transport in the rodent small intestine. Transmucosal LPS transport was measured in Ussing-chambered rat jejunal mucosa. In anesthetized rats, the appearance of fluorescein isothiocyanate (FITC)-LPS into the portal vein (PV) and the mesenteric lymph was simultaneously monitored after intraduodenal perfusion of FITC-LPS with oleic acid and taurocholate (OA/TCA). In vitro, luminally applied LPS rapidly appeared in the serosal solution only with luminal OA/TCA present, inhibited by the lipid raft inhibitor methyl-ß-cyclodextrin (MßCD) and the CD36 inhibitor sulfosuccinimidyl oleate (SSO), or by serosal GLP-2. In vivo, perfusion of FITC-LPS with OA/TCA rapidly increased FITC-LPS appearance into the PV, followed by a gradual increase of FITC-LPS into the lymph. Rapid PV transport was inhibited by the addition of MßCD or by SSO, whereas transport into the lymph was inhibited by chylomicron synthesis inhibition. Intraveous injection of the stable GLP-2 analog teduglutide acutely inhibited FITC-LPS transport into the PV, yet accelerated FITC-LPS transport into the lymph via Nω-nitro-l-arginine methyl ester (l-NAME)- and PG97-269-sensitive mechanisms. In vivo confocal microscopy in mouse jejunum confirmed intracellular FITC-LPS uptake with no evidence of paracellular localization. This is the first direct demonstration in vivo that luminal LPS may cross the small intestinal barrier physiologically during fat absorption via lipid raft- and CD36-mediated mechanisms, followed by predominant transport into the PV, and that teduglutide inhibits LPS uptake into the PV in vivo.NEW & NOTEWORTHY We report direct in vivo confirmation of transcellular lipopolysaccharides (LPS) uptake from the intestine into the portal vein (PV) involving CD36 and lipid rafts, with minor uptake via the canonical chylomicron pathway. The gut hormone glucagon-like peptide-2 (GLP-2) inhibited uptake into the PV. These data suggest that the bulk of LPS absorption is via the PV to the liver, helping clarify the mechanism of LPS transport into the PV as part of the "gut-liver" axis. These data do not support the paracellular transport of LPS, which has been implicated in the pathogenesis of the "leaky gut" syndrome.
Asunto(s)
Grasas/metabolismo , Intestino Delgado/metabolismo , Lipopolisacáridos/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Transporte Biológico/fisiología , Fármacos Gastrointestinales/farmacología , Células HEK293 , Humanos , Intestino Delgado/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Péptidos/química , Péptidos/farmacología , Ratas , Ratas Sprague-Dawley , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismoRESUMEN
[This corrects the article DOI: 10.1371/journal.pone.0230190.].
RESUMEN
A 23-amino acid peptide named obestatin is derived from the ghrelin gene. The aim of the experiment was to study the effects of enteral obestatin administration for a 6-day period on intestinal contractility in piglets fed milk formula. Pigs were treated with 0.9% NaCl (group C) or varying doses of obestatin: 2 µg/kg body weight (BW) (group O2), 10 µg/kg BW (O10) or 15 µg/kg BW (O15) every 8 hours via a stomach tube. Blood was sampled for assessment of obestatin concentration. Duodenal and middle jejunum whole-thickness preparations were studied in an organ bath for isometric recording under electric field stimulation (EFS) and increasing doses of acetylcholine (ACh), and in the presence of atropine and tetrodotoxin (TTX). Additionally, the measurement of intestinal muscularis layer and the immunodetection of Muscarinic Acetylcholine Receptors (M1 and M2) were performed. In comparison to C animals, the obestatin concentration in blood plasma was significantly increased in groups O10 and O15. In both studied intestinal segments, significant increases in the frequency and amplitude of spontaneous contractions were observed in O15 and C groups. In the duodenum and middle jejunum significant differences in responsiveness to EFS (0.5, 5 and 50 Hz) were observed between the groups. The addition of 10-4 M ACh to the duodenum significantly increased the responsiveness in tissues. In contrast, in the middle jejunum a significant increase in the amplitude of contraction was observed after the addition of 10-9 and 10-6 M ACh (groups O15 and O10, respectively). Pretreatment with atropine and TTX resulted in a significant decrease in the responsiveness of the intestinal preparations from all groups, in both studied segments. The increased contractility was not dependent on the expression of muscarinic receptors. Results indicate the importance of enteral obestatin administration in the regulation of intestinal contractility in neonatal piglets.
RESUMEN
BACKGROUND: Circulating endotoxin (lipopolysaccharide, LPS) increases the gut paracellular permeability. We hypothesized that glucagon-like peptide-2 (GLP-2) acutely reduces LPS-related increased intestinal paracellular permeability by a mechanism unrelated to its intestinotrophic effect. METHODS: We assessed small intestinal paracellular permeability in vivo by measuring the appearance of intraduodenally perfused FITC-dextran 4000 (FD4) into the portal vein (PV) in rats 1-24 h after LPS treatment (5 mg/kg, ip). We also examined the effect of a stable GLP-2 analog teduglutide (TDG) on FD4 permeability. RESULTS: FD4 movement into the PV was increased 6 h, but not 1 or 3 h after LPS treatment, with increased PV GLP-2 levels and increased mRNA expressions of proinflammatory cytokines and proglucagon in the ileal mucosa. Co-treatment with a GLP-2 receptor antagonist enhanced PV FD4 concentrations. PV FD4 concentrations 24 h after LPS were higher than FD4 concentrations 6 h after LPS, reduced by exogenous GLP-2 treatment given 6 or 12 h after LPS treatment. FD4 uptake measured 6 h after LPS was reduced by TDG 3 or 6 h after LPS treatment. TDG-associated reduced FD4 uptake was reversed by the VPAC1 antagonist PG97-269 or L-NAME, not by EGF or IGF1 receptor inhibitors. CONCLUSIONS: Systemic LPS releases endogenous GLP-2, reducing LPS-related increased permeability. The therapeutic window of exogenous GLP-2 administration is at minimum within 6-12 h after LPS treatment. Exogenous GLP-2 treatment is of value in the prevention of increased paracellular permeability associated with endotoxemia.
Asunto(s)
Endotoxemia/prevención & control , Péptido 2 Similar al Glucagón/metabolismo , Receptor del Péptido 2 Similar al Glucagón/agonistas , Absorción Intestinal/efectos de los fármacos , Intestino Delgado/efectos de los fármacos , Péptidos/farmacología , Animales , Dextranos/sangre , Modelos Animales de Enfermedad , Endotoxemia/sangre , Endotoxemia/inducido químicamente , Fluoresceína-5-Isotiocianato/análogos & derivados , Receptor del Péptido 2 Similar al Glucagón/metabolismo , Mediadores de Inflamación/metabolismo , Intestino Delgado/metabolismo , Lipopolisacáridos , Masculino , Permeabilidad , Vena Porta , Ratas Sprague-Dawley , Factores de TiempoRESUMEN
The effect of non-viable lactic acid bacteria on gastrointestinal physiology and dysfunction remains still unclear. Previous clinical trials have reported that Lactobacillus gasseri CP2305 (CP2305) exerts stress-relieving and anti-flatulent effects regardless of cell viability. In this study, we investigated the effect of viable and non-viable CP2305 cells on electrical field stimulation (EFS)-evoked increases in short-circuit current (Isc) using the Ussing chamber technique. In mucosal-submucosal preparations of rats, both viable and non-viable CP2305 cells significantly and acutely inhibited the EFS-evoked increases in Isc in the middle and distal colon and rectum but not in proximal colon. The inhibition of EFS-evoked Isc differed from strain to strain. Peripheral injection of corticotropin releasing factor (CRF) is known to mimic diarrhea symptoms in rats. Therefore, we examined the chronic effects of CP2305 cells on CRF-induced diarrhea in the rat model. Treatment with viable and non-viable CP2305 cells significantly improved CRF-induced diarrhea in the rat model. However, the treatment did not affect the fecal pellet output. These findings suggest that CP2305 has an important role in gastrointestinal physiology and dysfunction.
Asunto(s)
Hormona Liberadora de Corticotropina/metabolismo , Diarrea/metabolismo , Diarrea/microbiología , Infecciones por Bacterias Grampositivas/metabolismo , Infecciones por Bacterias Grampositivas/microbiología , Transporte Iónico , Lactobacillus gasseri/fisiología , Animales , Colon/metabolismo , Colon/microbiología , Modelos Animales de Enfermedad , Masculino , RatasRESUMEN
Xenin-25 is a neurotensin-like peptide that is secreted by enteroendocrine cells in the small intestine. Xenin-8 is reported to augment duodenal anion secretion by activating afferent neural pathways. The intrinsic neuronal circuits mediating the xenin-25-induced anion secretion were characterized using the Ussing-chambered, mucosa-submucosa preparation from the rat ileum. Serosal application of xenin-25 increased the short-circuit current in a concentration-dependent manner. The responses were abolished by the combination of Cl--free and HCO3- -free solutions. The responses were almost completely blocked by TTX (10-6 M) but not by atropine (10-5 M) or hexamethonium (10-4 M). The selective antagonists for neurotensin receptor 1 (NTSR1), neurokinin 1 (NK1), vasoactive intestinal polypeptide (VIP) receptors 1 and 2 (VPAC1 and VPAC2, respectively), and capsaicin, but not 5-hydroxyltryptamine receptors 3 and 4 (5-HT3 and 5-HT4), NTSR2, and A803467, inhibited the responses to xenin-25. The expression of VIP receptors (Vipr) in rat ileum was examined using RT-PCR. The Vipr1 PCR products were detected in the submucosal plexus and mucosa. Immunohistochemical staining showed the colocalization of NTSR1 and NK1 with substance P (SP)- and calbindin-immunoreactive neurons in the submucosal plexus, respectively. In addition, NK1 was colocalized with noncholinergic VIP secretomotor neurons. Based on the results from the present study, xenin-25-induced Cl-/ HCO3- secretion is involved in NTSR1 activation on intrinsic and extrinsic afferent neurons, followed by the release of SP and subsequent activation of NK1 expressed on noncholinergic VIP secretomotor neurons. Finally, the secreted VIP may activate VPAC1 on epithelial cells to induce Cl-/ HCO3- secretion in the rat ileum. Activation of noncholinergic VIP secretomotor neurons by intrinsic primary afferent neurons and extrinsic afferent neurons by postprandially released xenin-25 may account for most of the neurogenic secretory response induced by xenin-25. NEW & NOTEWORTHY This study is the first to investigate the intrinsic neuronal circuit responsible for xenin-25-induced anion secretion in the rat small intestine. We have found that nutrient-stimulated xenin-25 release may activate noncholinergic vasoactive intestinal polypeptide (VIP) secretomotor neurons to promote Cl-/ HCO3- secretion through the activation of VIP receptor 1 on epithelial cells. Moreover, the xenin-25-induced secretory responses are mainly linked with intrinsic primary afferent neurons, which are involved in the activation of neurotensin receptor 1 and neurokinin 1 receptor.
Asunto(s)
Aniones/metabolismo , Sistema Nervioso Entérico/metabolismo , Íleon , Vías Nerviosas/metabolismo , Neurotensina/metabolismo , Receptores de Tipo I del Polipéptido Intestinal Vasoactivo/metabolismo , Animales , Hormonas Gastrointestinales/metabolismo , Íleon/inervación , Íleon/fisiología , Mucosa Intestinal/metabolismo , Ratas , Receptores de Neurotensina/metabolismoRESUMEN
Diabetes mellitus is a well-known common disease and one of the most serious social problems in the worldwide. Although various types of drugs are developed, the number of patients suffering from diabetes mellitus is still increasing. Ninjin'yoeito (NYT) is one of formulas used in Japanese traditional herbal medicines for improving various types of metabolic disorders. However, the effect of NYT on diabetes mellitus has not yet been investigated. In the present study, we tried to clarify the action of NYT on the serum glucose level in streptozotocin (STZ)-induced diabetic mice. We found that intake of NYT decreased the serum glucose level and increased insulin sensitivity in STZ-induced diabetic mice. NYT treatment also improved acidification of the interstitial fluid around skeletal muscles found in STZ-induced diabetic mice, while the interstitial fluid acidification has been reported to cause insulin resistance. Furthermore, in the proximal colon of STZ-induced diabetic mice, NYT treatment showed a tendency to increase the expression of sodium-coupled monocarboxylate transporter 1 (SMCT1), which has ability to absorb weak organic acids (pH buffer molecules) resulting in improvement of the interstitial fluid acidification. Based on these observations, the present study suggests that NYT is a useful formula to improve hyperglycemia and insulin resistance via elevation of interstitial fluid pH in diabetes mellitus, which might be caused by increased absorption of pH buffer molecules (SMCT1 substrates, weak organic acids) mediated through possibly elevated SMCT1 expression in the proximal colon.
RESUMEN
This study investigated the effect of enteral administration of obestatin on the development of small intestine, as well as oxidative stress markers and trancriptomic profile of gastrointestinal genes. Suckling rats were assigned to 3 groups treated with: C-saline solution; OL-obestatin (125 nmol/kg BW); OH-obestatin (250 nmol/kg BW) administered twice daily, from the 14th to the 21st day of life. Enteral administration of obestatin in both studied doses had no effect neither on the body weight of animals nor the BMI calculated in the day of euthanasia. Compared to the control group (C), treatment with obestatin resulted in significant changes in the histometry of the small intestinal wall as well as intestinal epithelial cell remodeling. The observed changes and their possible implications for intestinal development were dependent on the dosage of peptide. The enteral administration of high dose (OH) of obestatin significantly decreased its expression in the stomach and increased markers of oxidative stress. The gene profile revealed MAPK3 (mitogen-activated protein kinase-3) as the key regulator gene for obestatin action in the gastrointestinal track. In conclusion, we have showed that enteral administration of obestatin influences the gut mucosa remodeling. It is also suggested that the administration of high dose (OH) has inhibitory effect on the intestinal maturation of suckling rats.
Asunto(s)
Ghrelina/administración & dosificación , Ghrelina/farmacología , Intestino Delgado/crecimiento & desarrollo , Adiposidad/efectos de los fármacos , Animales , Animales Lactantes , Peso Corporal/efectos de los fármacos , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Reparación del ADN/efectos de los fármacos , Nutrición Enteral , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Ghrelina/sangre , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/crecimiento & desarrollo , Mucosa Intestinal/metabolismo , Intestino Delgado/efectos de los fármacos , Intestino Delgado/metabolismo , Microvellosidades/efectos de los fármacos , Microvellosidades/enzimología , Péptidos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Wistar , Estómago/efectos de los fármacosRESUMEN
The diffuse chemosensory system (DCS) is well developed in the apparatuses of endodermal origin like gastrointestinal (GI) tract. The primary function of the GI tract is the extraction of nutrients from the diet. Therefore, the GI tract must possess an efficient surveillance system that continuously monitors the luminal contents for beneficial or harmful compounds. Recent studies have shown that specialized cells in the intestinal lining can sense changes in the luminal content. The chemosensory cells in the GI tract belong to the DCS which consists of enteroendocrine and related cells. These cells initiate various important local and remote reflexes. Although neural and hormonal involvements in ion transport in the GI tract are well documented, involvement of the DCS in the regulation of intestinal ion transport is much less understood. Since activation of luminal chemosensory receptors is a primary signal that elicits changes in intestinal ion transport and motility and failure of the system causes dysfunctions in host homeostasis, as well as functional GI disorders, study of the regulation of GI function by the DCS has become increasingly important. This review discusses the role of the DCS in epithelial ion transport, with particular emphasis on the involvement of free fatty acid receptor 2 (FFA2) and free fatty acid receptor 3 (FFA3).
Asunto(s)
Bicarbonatos/metabolismo , Células Quimiorreceptoras/metabolismo , Cloruros/metabolismo , Mucosa Intestinal/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Humanos , Mucosa Intestinal/citología , Transporte IónicoRESUMEN
BACKGROUND: Therapy with nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with enteropathy in humans and experimental animals, a cause of considerable morbidity. Unlike foregut NSAID-associated mucosal lesions, most treatments for this condition are of little efficacy. We propose that the endogenously released intestinotrophic hormone glucagon-like peptide-2 (GLP-2) prevents the development of NSAID-induced enteropathy. Since the short-chain fatty acid receptor FFA3 is expressed on enteroendocrine L cells and on enteric nerves in the gastrointestinal tract, we further hypothesized that activation of FFA3 on L cells protects the mucosa from injury via GLP-2 release with enhanced duodenal HCO3- secretion. We thus investigated the effects of synthetic selective FFA3 agonists with consequent GLP-2 release on NSAID-induced enteropathy. METHODS: We measured duodenal HCO3- secretion in isoflurane-anesthetized rats in a duodenal loop perfused with the selective FFA3 agonists MQC or AR420626 (AR) while measuring released GLP-2 in the portal vein (PV). Intestinal injury was produced by indomethacin (IND, 10 mg/kg, sc) with or without MQC (1-10 mg/kg, ig) or AR (0.01-0.1 mg/kg, ig or ip) treatment. RESULTS: Luminal perfusion with MQC or AR (0.1-10 µM) dose-dependently augmented duodenal HCO3- secretion accompanied by increased GLP-2 concentrations in the PV. The effect of FFA3 agonists was inhibited by co-perfusion of the selective FFA3 antagonist CF3-MQC (30 µM). AR-induced augmented HCO3- secretion was reduced by iv injection of the GLP-2 receptor antagonist GLP-2(3-33) (3 nmol/kg), or by pretreatment with the cystic fibrosis transmembrane conductance regulator (CFTR) inhibitor CFTRinh-172 (1 mg/kg, ip). IND-induced small intestinal ulcers were dose-dependently inhibited by intragastric administration of MQC or AR. GLP-2(3-33) (1 mg/kg, ip) or CF3-MQC (1 mg/kg, ig) reversed AR-associated reduction in IND-induced enteropathy. In contrast, ip injection of AR had no effect on enteropathy. CONCLUSION: These results suggest that luminal FFA3 activation enhances mucosal defenses and prevents NSAID-induced enteropathy via the GLP-2 pathway. The selective FFA3 agonist may be a potential therapeutic candidate for NSAID-induced enteropathy.
Asunto(s)
Antiinflamatorios no Esteroideos/efectos adversos , Bicarbonatos/metabolismo , Duodeno/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Péptido 2 Similar al Glucagón/metabolismo , Enfermedades Intestinales/prevención & control , Receptores Acoplados a Proteínas G/agonistas , Transducción de Señal , Animales , Regulador de Conductancia de Transmembrana de Fibrosis Quística/antagonistas & inhibidores , Indometacina/efectos adversos , Enfermedades Intestinales/inducido químicamente , Mucosa Intestinal/metabolismo , Masculino , Quinolonas/farmacología , Ratas , Ratas Sprague-Dawley , Úlcera/inducido químicamente , Úlcera/prevención & controlRESUMEN
Serotonin (5-HT), predominantly synthesized and released by enterochromaffin cells, is implicated in gastrointestinal symptoms such as emesis, abdominal pain, and diarrhea. Because luminal short-chain fatty acids (SCFAs) release 5-HT from enterochromaffin cells, which express the SCFA receptor free fatty acid receptor 2 (FFA2) in rat duodenum, we examined the effects of the selective FFA2 agonist phenylacetamide-1 (PA1) on duodenal 5-HT release with consequent bicarbonate secretion [duodenal bicarbonate secretion (DBS)] and on indomethacin (IND)-induced enteropathy. Intestinal injury was induced by IND (10 mg/kg sc) with or without PA1. We measured DBS in vivo in a duodenal loop perfused with PA1 while measuring 5-HT released in the portal vein. Duodenal blood flow was measured by laser-Doppler flowmetry. IND induced small intestinal ulcers with duodenal sparing. PA1 given with IND (IND + PA1) dose dependently induced duodenal erosions. IND + PA1-induced duodenal lesions were inhibited by the FFA2 antagonist GLPG-0974, ondansetron, or omeprazole but not by RS-23597 or atropine. Luminal perfusion of PA1 augmented DBS accompanied by increased portal blood 5-HT concentrations with approximately eight times more release at 0.1 mM than at 1 µM, with the effects inhibited by coperfusion of GLPG-0974. Luminal PA1 at 1 µM increased, but at 0.1 mM diminished, duodenal blood flow. Cosuperfusion of PA1 (0.1 mM) decreased acid-induced hyperemia, further reduced by IND pretreatment but restored by ondansetron. These results suggest that, although FFA2 activation enhances duodenal mucosal defenses, FFA2 overactivation during ulcerogenic cyclooxygenase inhibition may increase the vulnerability of the duodenal mucosa to gastric acid via excessive 5-HT release and 5-HT3 receptor activation, implicated in foregut-related symptoms such as emesis and epigastralgia.NEW & NOTEWORTHY Luminal free fatty acid receptor 2 agonists stimulate enterochromaffin cells and release serotonin, which enhances mucosal defenses in rat duodenum. However, overdriving serotonin release with high luminal concentrations of free fatty acid 2 ligands such as short-chain fatty acids injures the mucosa by decreasing mucosal blood flow. These results are likely implicated in serotonin-related dyspeptic symptom generation because of small intestinal bacterial overgrowth, which is hypothesized to generate excess SCFAs in the foregut, overdriving serotonin release from enterochromaffin cells.
Asunto(s)
Inhibidores de la Ciclooxigenasa/farmacología , Duodeno/efectos de los fármacos , Indometacina/farmacología , Mucosa Intestinal/efectos de los fármacos , Receptores Acoplados a Proteínas G/agonistas , Serotonina/metabolismo , Animales , Bicarbonatos/metabolismo , Duodeno/metabolismo , Células Enterocromafines/efectos de los fármacos , Células Enterocromafines/metabolismo , Mucosa Intestinal/metabolismo , RatasRESUMEN
Intestinal epithelial cells form a tight barrier to act as selective physical barriers, repelling hostile substances. Tumor necrosis factor-α (TNF-α) is a well characterized pro-inflammatory cytokine which can compromise intestinal barrier function and the suppression of TNF-α function is important for treatment of inflammatory bowel disease (IBD). In this study, we investigated the contribution of G-protein-coupled receptor (GPCR)-induced signalling pathways to the maintenance of epithelial barrier function. We first demonstrated the existence of functional muscarinic M3 and histamine H1 receptors in colonic epithelial cell HT-29/B6. As we previously reported, muscarinic M3 receptor prevented TNF-α-induced barrier disruption through acceleration of TNF receptor (TNFR) shedding which is carried out by TNF-α converting enzyme (TACE). M3 receptor-mediated suppression of TNF-α function depends on Gαq/11 protein, however, histamine H1 receptor could not ameliorate TNF-α function, while which could induce Gαq/11 dependent intracellular Ca2+ mobilization. We found that p38 MAPK was predominantly phosphorylated by M3 receptor through Gαq/11 protein, whereas H1 receptor barely upregulated the phosphorylation. Inhibition of p38 MAPK abolished M3 receptor-mediated TNFR shedding and suppression of TNF-α-induced NF-κB signalling. The p38 MAPK was also involved in TACE- mediated EGFR transactivation followed by ERK1/2 phosphorylation. These results indicate that not H1 but M3 receptor-induced activation of p38 MAPK might contribute to the maintenance of epithelial barrier function through down-regulation of TNF-α signalling and activation of EGFR.
Asunto(s)
Receptores ErbB/genética , Receptor Muscarínico M3/genética , Factor de Necrosis Tumoral alfa/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Células Epiteliales/metabolismo , Receptores ErbB/metabolismo , Células HT29 , Humanos , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Fosforilación , Receptor Muscarínico M3/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Histamínicos H1/genética , Receptores Histamínicos H1/metabolismo , Receptores del Factor de Necrosis Tumoral/genética , Receptores del Factor de Necrosis Tumoral/metabolismo , Transducción de Señal/genética , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismoRESUMEN
Xenin-25, a neurotensin (NT)-related anorexigenic gut hormone generated mostly in the duodenal mucosa, is believed to increase the rate of duodenal ion secretion, because xenin-induced diarrhea is not present after Roux-en-Y gastric bypass surgery. Because the local effects of xenin on duodenal ion secretion have remained uninvestigated, we thus examined the neural pathways underlying xenin-induced duodenal anion secretion. Intravenous infusion of xenin-8, a bioactive C-terminal fragment of xenin-25, dose dependently increased the rate of duodenal HCO3- secretion in perfused duodenal loops of anesthetized rats. Xenin was immunolocalized to a subset of enteroendocrine cells in the rat duodenum. The mRNA of the xenin/NT receptor 1 (NTS1) was predominantly expressed in the enteric plexus, nodose and dorsal root ganglia, and in the lamina propria rather than in the epithelium. The serosal application of xenin-8 or xenin-25 rapidly and transiently increased short-circuit current in Ussing-chambered mucosa-submucosa preparations in a concentration-dependent manner in the duodenum and jejunum, but less so in the ileum and colon. The selective antagonist for NTS1, substance P (SP) receptor (NK1), or 5-hydroxytryptamine (5-HT)3, but not NTS2, inhibited the responses to xenin. Xenin-evoked Cl- secretion was reduced by tetrodotoxin (TTX) or capsaicin-pretreatment, and abolished by the inhibitor of TTX-resistant sodium channel Nav1.8 in combination with TTX, suggesting that peripheral xenin augments duodenal HCO3- and Cl- secretion through NTS1 activation on intrinsic and extrinsic afferent nerves, followed by release of SP and 5-HT. Afferent nerve activation by postprandial, peripherally released xenin may account for its secretory effects in the duodenum.
Asunto(s)
Duodeno/efectos de los fármacos , Duodeno/metabolismo , Neuronas Aferentes/efectos de los fármacos , Neuronas Aferentes/metabolismo , Neurotensina/farmacología , Vías Aferentes/efectos de los fármacos , Vías Aferentes/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Hormonas Gastrointestinales/farmacología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Masculino , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-DawleyRESUMEN
Non-neuronal and atropine-sensitive ileal contractile responses to short chain fatty acids (SCFAs) are detected in the neonatal stage, and change with age or inflammatory conditions. However, the roles of luminal SCFAs in developmental changes have not yet been elucidated. We examined ileal contractile responses to SCFAs in mice colonized with different SCFA-producing intestinal microbiota under normal and inflammatory conditions. Using conventional (Conv), germ-free (GF), and gnotobiotic mice infected with Bifidobacterium (GB-bif), Propionibacterium (GB-prop), or Lactobacillus (GB-lact), ileal contractions were measured in 1-day-old neonates and 7-week-old mice using an isotonic transducer. Contractions occurred in all 1-day-old neonates, and were significantly desensitized in the adult stage in the Conv, GB-bif, and GB-prop groups, but not in the GF and GB-lact groups. An injection of lipopolysaccharide frequently restored desensitized contractions; however, the contraction rate did not change in the GF and GB-lact groups. The relative mRNA expression of a SCFA receptor (GPR43) or nicotinic acetylcholine receptor α7 was weaker in the GF group (0.3-fold or 0.4-fold expression level, respectively) than in the Conv group. In conclusion, the luminal inhabitation of SCFA-producing bacteria may potentiate the regulation of non-neuronal and atropine-sensitive ileal contractile responses to SCFAs under healthy and inflammatory conditions.