RESUMEN
BACKGROUND: The mechanistic target of rapamycin (mTOR) is a crucial regulator of cell metabolic activity. It forms part of several distinct protein complexes, particularly mTORC1 and mTORC2. The lack of specific inhibitors still hampers the attribution of mTOR functions to these complexes. JR-AB2-011 has been reported as a specific mTORC2 inhibitor preventing mTOR binding to RICTOR, a unique component of mTORC2. We aimed to describe the effects of JR-AB2-011 in leukemia/lymphoma cells, where the mTOR pathway is often aberrantly activated. METHODS: The impact of JR-AB2-011 on leukemia/lymphoma cell metabolism was analyzed using the Seahorse platform. AKT phosphorylation at Ser473 was used as a marker of mTORC2 activity. mTOR binding to RICTOR was assessed by co-immunoprecipitation. RICTOR-null cells were derived from the Karpas-299 cell line using CRISPR/Cas9 gene editing. RESULTS: In leukemia/lymphoma cell lines, JR-AB2-011 induced a rapid drop in the cell respiration rate, which was variably compensated by an increased glycolytic rate. In contrast, an increase in the respiration rate due to JR-AB2-011 treatment was observed in primary leukemia cells. Unexpectedly, JR-AB2-011 did not affect AKT Ser473 phosphorylation. In addition, mTOR did not dissociate from RICTOR in cells treated with JR-AB2-011 under the experimental conditions used in this study. The effect of JR-AB2-011 on cell respiration was retained in RICTOR-null cells. CONCLUSION: JR-AB2-011 affects leukemia/lymphoma cell metabolism via a mechanism independent of mTORC2.
RESUMEN
The p21-activated kinase (PAK) family of proteins regulates various processes requiring dynamic cytoskeleton organization such as cell adhesion, migration, proliferation, and apoptosis. Among the six members of the protein family, PAK2 is specifically involved in apoptosis, angiogenesis, or the development of endothelial cells. We report a novel de novo heterozygous missense PAK2 variant, p.(Thr406Met), found in a newborn with clinical manifestations of Knobloch syndrome. In vitro experiments indicated that this and another reported variant, p.(Asp425Asn), result in substantially impaired protein kinase activity. Similar findings were described previously for the PAK2 p.(Glu435Lys) variant found in two siblings with proposed Knobloch syndrome type 2 (KNO2). These new variants support the association of PAK2 kinase deficiency with a second, autosomal dominant form of Knobloch syndrome: KNO2.
Asunto(s)
Quinasas p21 Activadas , Humanos , Quinasas p21 Activadas/genética , Desprendimiento de Retina/genética , Desprendimiento de Retina/patología , Desprendimiento de Retina/congénito , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Masculino , Recién Nacido , Femenino , Mutación Missense/genética , EncefaloceleRESUMEN
Somatic JAK2 mutations are the main molecular cause of the vast majority of polycythemia vera (PV) cases. According to a recent structural model, the prevalent acquired V617F mutation improves the stability of the JAK2 dimer, thereby enhancing the constitutive JAK2 kinase activity. Germline JAK2 mutations usually do not largely alter JAK2 signaling, although they may modulate the impact of V617F. We found an unusual germline JAK2 mutation L604F in homozygous form in a young PV patient, along with a low allele burden JAK2 V617F mutation, and in her apparently healthy sister. Their father with a PV-like disease had L604F in a heterozygous state, without V617F. The functional consequences of JAK2 L604Fmutation were compared with those induced by V617F in two different in vitro model systems: (i) HEK293T cells were transfected with plasmids for exogenous JAK2-GFP expression, and (ii) endogenous JAK2 modifications were introduced into HeLa cells using CRISPR/Cas9. Both mutations significantly increased JAK2 constitutive activity in transfected HEK293T cells. In the second model, JAK2 modification resulted in reduced total JAK2 protein levels. An important difference was also detected: as described previously, the effect of V617F on JAK2 kinase activity was abrogated in the absence of the aromatic residue F595. In contrast, JAK2 hyperactivation by L604F was only partially inhibited by the F595 change to alanine. We propose that the L604F mutation increases the probability of spontaneous JAK2 dimer formation, which is physiologically mediated by F595. In addition, L604F may contribute to dimer stabilization similarly to V617F.
Asunto(s)
Células Germinativas , Mutación de Línea Germinal , Humanos , Femenino , Células HEK293 , Células HeLa , Mutación , Janus Quinasa 2/genéticaRESUMEN
The immune system is important for elimination of residual leukemic cells during acute myeloid leukemia (AML) therapy. Anti-leukemia immune response can be inhibited by various mechanisms leading to immune evasion and disease relapse. Selected markers of immune escape were analyzed on AML cells from leukapheresis at diagnosis (N = 53). Hierarchical clustering of AML immunophenotypes yielded distinct genetic clusters. In the absence of DNMT3A mutation, NPM1 mutation was associated with decreased HLA expression and low levels of other markers (CLIP, PD-L1, TIM-3). Analysis of an independent cohort confirmed decreased levels of HLA transcripts in patients with NPM1 mutation. Samples with combined NPM1 and DNMT3A mutations had high CLIP surface amount suggesting reduced antigen presentation. TIM-3 transcript correlated not only with TIM-3 surface protein but also with CLIP and PD-L1. In our cohort, high levels of TIM-3/PD-L1/CLIP were associated with lower survival. Our results suggest that AML genotype is related to blast immunophenotype, and that high TIM-3 transcript levels in AML blasts could be a marker of immune escape. Cellular pathways regulating resistance to the immune system might contribute to the predicted response to standard therapy of patients in specific AML subgroups and should be targeted to improve AML treatment.
Asunto(s)
ADN Metiltransferasa 3A , Leucemia Mieloide Aguda , Nucleofosmina , Antígeno B7-H1/genética , Biomarcadores , ADN Metiltransferasa 3A/genética , Receptor 2 Celular del Virus de la Hepatitis A/genética , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Mutación , Nucleofosmina/genéticaRESUMEN
P21-activated kinases (PAKs) regulate processes associated with cytoskeletal rearrangements, such as cell division, adhesion, and migration. The possible regulatory role of PAKs in cell metabolism has not been well explored, but increasing evidence suggests that a cell metabolic phenotype is related to cell interactions with the microenvironment. We analyzed the impact of PAK inhibition by small molecule inhibitors, small interfering RNA, or gene knockout on the rates of mitochondrial respiration and aerobic glycolysis. Pharmacological inhibition of PAK group I by IPA-3 induced a strong decrease in metabolic rates in human adherent cancer cell lines, leukemia/lymphoma cell lines, and primary leukemia cells. The immediate effect of FRAX597, which inhibits PAK kinase activity, was moderate, indicating that PAK nonkinase functions are essential for cell metabolism. Selective downregulation or deletion of PAK2 was associated with a shift toward oxidative phosphorylation. In contrast, PAK1 knockout resulted in increased glycolysis. However, the overall metabolic capacity was not substantially reduced by PAK1 or PAK2 deletion, possibly due to partial redundancy in PAK1/PAK2 regulatory roles or to activation of other compensatory mechanisms.
Asunto(s)
Mitocondrias/enzimología , Proteínas de Neoplasias/metabolismo , Neoplasias/enzimología , Microambiente Tumoral , Quinasas p21 Activadas/metabolismo , Células HEK293 , Células HeLa , Humanos , Mitocondrias/genética , Proteínas de Neoplasias/genética , Neoplasias/genética , Quinasas p21 Activadas/genéticaRESUMEN
Knobloch syndrome is an autosomal recessive phenotype mainly characterized by retinal detachment and encephalocele caused by biallelic pathogenic variants in the COL18A1 gene. However, there are patients clinically diagnosed as Knobloch syndrome with unknown molecular etiology not linked to COL18A1. We studied an historical pedigree (published in 1998) designated as KNO2 (Knobloch type 2 syndrome with intellectual disability, autistic behavior, retinal degeneration, encephalocele). Whole exome sequencing of the two affected siblings and the normal parents resulted in the identification of a PAK2 non-synonymous substitution p.(Glu435Lys) as a causative variant. The variant was monoallelic and apparently de novo in both siblings indicating a likely germ-line mosaicism in one of the parents; the mosaicism, however, could not be observed after deep sequencing of blood parental DNA. PAK2 encodes a member of a small group of serine/threonine kinases; these P21-activating kinases (PAKs) are essential in signal transduction and cellular regulation (cytoskeletal dynamics, cell motility, death and survival signaling and cell cycle progression). Structural analysis of the PAK2 p.(Glu435Lys) variant that is located in the kinase domain of the protein predicts a possible compromise in the kinase activity. Functional analysis of the p.(Glu435Lys) PAK2 variant in transfected HEK293T cells results in a partial loss of the kinase activity. PAK2 has been previously suggested as an autism-related gene. Our results show that PAK2-induced phenotypic spectrum is broad and not fully understood. We conclude that the KNO2 syndrome in the studied family is dominant and caused by a deleterious variant in the PAK2 gene.
Asunto(s)
Degeneración Retiniana , Desprendimiento de Retina , Encefalocele/diagnóstico , Encefalocele/genética , Encefalocele/patología , Células HEK293 , Humanos , Mutación , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Desprendimiento de Retina/congénito , Desprendimiento de Retina/genética , Quinasas p21 Activadas/genéticaRESUMEN
P21-activated kinases (PAK) regulate processes associated with cytoskeleton dynamics. PAK expression in leukemia cells was measured on protein and mRNA levels. In functional assays, we analyzed the effect of PAK inhibitors IPA-3 and FRAX597 on cell adhesivity and viability. PAK2 was dominant in cell lines, whereas primary cells also expressed comparable amount of PAK1 transcription isoforms: PAK1-full and PAK1Δ15. PAK1Δ15 and PAK2 levels correlated with surface density of integrins ß1 and αVß3. PAK1-full, but not PAK2, was present in membrane protrusions. IPA-3, which prevents PAK activation, induced cell contraction in semi-adherent HEL cells only. FRAX597, which inhibits PAK kinase activity, increased cell-surface contact area in all leukemia cells. Both inhibitors reduced the stability of cell attachment and induced cell death.
Asunto(s)
Leucemia , Quinasas p21 Activadas , Adhesión Celular , Línea Celular , Fibronectinas/genética , Humanos , Leucemia/genética , Quinasas p21 Activadas/genéticaRESUMEN
Nucleophosmin (NPM) mutations causing its export from the nucleoli to the cytoplasm are frequent in acute myeloid leukemia (AML). Due to heterooligomerization of wild type NPM with the AML-related mutant, the wild-type becomes misplaced from the nucleoli and its functions are significantly altered. Dissociation of NPM heterooligomers may thus restore the proper localization and function of wild-type NPM. NSC348884 is supposed to act as a potent inhibitor of NPM oligomerization. The effect of NSC348884 on the NPM oligomerization was thoroughly examined by fluorescence lifetime imaging with utilization of FRET and by a set of immunoprecipitation and electrophoretic methods. Leukemia-derived cell lines and primary AML cells as well as cells transfected with fluorescently labeled NPM forms were investigated. Our results clearly demonstrate that NSC348884 does not inhibit formation of NPM oligomers neither in vivo nor in vitro. Instead, we document that NSC348884 cytotoxicity is rather associated with modified cell adhesion signaling. The cytotoxic mechanism of NSC348884 has therefore to be reconsidered.
Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Indoles/farmacología , Leucemia/tratamiento farmacológico , Proteínas Nucleares/metabolismo , Línea Celular Tumoral , Células HEK293 , Humanos , Leucemia/genética , Leucemia/metabolismo , Proteínas Nucleares/genética , NucleofosminaRESUMEN
OBJECTIVES: Interaction of leukemia cells with the bone marrow extracellular matrix promotes cell survival and resistance to chemotherapy. In this work, we analyzed integrin expression and adhesivity to fibronectin in primary cells from patients with acute myeloid leukemia. METHODS: Surface expression of integrins ß1 and αVß3 on primary leukemia cells (N = 46) was correlated with the stem cell marker CD34, as well as with cell adhesivity to fibronectin. The results were analyzed with regard to the mutational status of NPM1 and FLT3 genes. RESULTS: The integrin ß1 was omnipresent, whereas αVß3 was often more expressed on CD34-positive cells. In particular, higher αVß3 expression on CD34+ cells was associated with NPM1 mutation (P = .0018). Monocytic leukemias had significantly higher αVß3 expression compared to less maturated cases (P = .0008). Cells from patients with internal tandem duplications in FLT3 (FLT3-ITD) had lower adhesivity to fibronectin compared to cells with wild-type FLT3 (P = .031), specifically in less differentiated myeloblasts. Inhibition of a putative FLT3-ITD target, EZH2, increased cell adhesivity in MV4-11 cell line (P = .024). CONCLUSIONS: The integrin αVß3 is expressed in particular on CD34+ cells with NPM1 mutation and might have a prognostic value in patients with mutated NPM1. FLT3-ITD is associated with lower cell adhesivity, especially in patients with less differentiated leukemias.
Asunto(s)
Fibronectinas/metabolismo , Integrinas/genética , Integrinas/metabolismo , Adhesión Celular , Línea Celular Tumoral , Membrana Celular/metabolismo , Duplicación de Gen , Expresión Génica , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Unión Proteica , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/metabolismoRESUMEN
P21-activated kinases (PAK) are key effectors of the small GTPases Rac1 and Cdc42, as well as of Src family kinases. In particular, PAK1 has several well-documented roles, both kinase-dependent and kinase-independent, in cancer-related processes, such as cell proliferation, adhesion, and migration. However, PAK1 properties and functions have not been attributed to individual PAK1 isoforms: besides the full-length kinase (PAK1-full), a splicing variant lacking the exon 15 (PAK1Δ15) is annotated in protein databases. In addition, it is not clear if PAK1 and PAK2 are functionally overlapping. Using fluorescently tagged forms of human PAK1-full, PAK1Δ15, and PAK2, we analyzed their intracellular localization and mutual interactions. Effects of PAK inhibition (IPA-3, FRAX597) or depletion (siRNA) on cell-surface adhesion were monitored by real-time microimpedance measurement. Both PAK1Δ15 and PAK2, but not PAK1-full, were enriched in focal adhesions, indicating that the C-terminus might be important for PAK intracellular localization. Using coimmunoprecipitation, we documented direct interactions among the studied PAK group I members: PAK1 and PAK2 form homodimers, but all possible heterocomplexes were also detected. Interaction of PAK1Δ15 or PAK2 with PAK1-full was associated with extensive PAK1Δ15/PAK2 cleavage. The impedance measurements indicate, that PAK2 depletion slows down cell attachment to a surface, and that PAK1-full is involved in cell spreading. Altogether, our data suggest a complex interplay among different PAK group I members, which have non-redundant functions.
Asunto(s)
Quinasas p21 Activadas/metabolismo , Adhesión Celular/genética , Adhesión Celular/fisiología , Línea Celular , Línea Celular Tumoral , Movimiento Celular/genética , Movimiento Celular/fisiología , Proliferación Celular/genética , Proliferación Celular/fisiología , Exones/genética , Células HEK293 , Células HeLa , Humanos , Transducción de Señal/genética , Transducción de Señal/fisiología , Quinasas p21 Activadas/genéticaRESUMEN
Compared to solid tumors, the role of PD-L1 in hematological malignancies is less explored, and the knowledge in this area is mostly limited to lymphomas. However, several studies indicated that PD-L1 is also overexpressed in myeloid malignancies. Successful treatment of the acute myeloid leukemia (AML) is likely associated with elimination of the residual disease by the immune system, and possible involvement of PD-L1 in this process remains to be elucidated. We analyzed PD-L1 expression on AML primary cells by flow cytometry and, in parallel, transcript levels were determined for the transcription variants v1 and v2. The ratio of v1/v2 cDNA correlated with the surface protein amount, and high v1/v2 levels were associated with worse overall survival (p = 0.0045). The prognostic impact of PD-L1 was limited to AML with mutated nucleophosmin and concomitant internal tandem duplications in the FLT3 gene (p less than 0.0001 for this particular AML subgroup).
Asunto(s)
Antígeno B7-H1/sangre , Biomarcadores de Tumor/sangre , Leucemia Mieloide Aguda/sangre , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Mutación , Proteínas Nucleares/genética , Nucleofosmina , ARN Mensajero/genética , ARN Mensajero/metabolismo , Tirosina Quinasa 3 Similar a fms/genéticaRESUMEN
Nucleophosmin (NPM), one of the most abundant nucleolar proteins, has crucial functions in ribosome biogenesis, cell cycle control, and DNA-damage repair. In human cells, NPM occurs mainly in oligomers. It functions as a chaperone, undergoes numerous interactions and forms part of many protein complexes. Although NPM role in carcinogenesis is not fully elucidated, a variety of tumor suppressor as well as oncogenic activities were described. NPM is overexpressed, fused with other proteins, or mutated in various tumor types. In the acute myeloid leukemia (AML), characteristic mutations in NPM1 gene, leading to modification of NPM C-terminus, are the most frequent genetic aberration. Although multiple mutation types of NPM are found in AML, they are all characterized by aberrant cytoplasmic localization of the mutated protein. In this review, current knowledge of the structure and function of NPM is presented in relation to its interaction network, in particular to the interaction with other nucleolar proteins and with proteins active in apoptosis. Possible molecular mechanisms of NPM mutation-driven leukemogenesis and NPM therapeutic targeting are discussed. Finally, recent findings concerning the immunogenicity of the mutated NPM and specific immunological features of AML patients with NPM mutation are summarized.
Asunto(s)
Leucemia Mieloide Aguda/metabolismo , Proteínas Nucleares/metabolismo , Animales , Humanos , Inmunoterapia , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/inmunología , Terapia Molecular Dirigida , Mutación , Proteínas Nucleares/química , Proteínas Nucleares/genética , Nucleofosmina , Multimerización de ProteínaRESUMEN
Acute myeloid leukemia with mutated nucleophosmin (NPMc+ AML) forms a distinct AML subgroup with better prognosis which can potentially be associated with immune response against the mutated nucleophosmin (NPM). As the T-cell-mediated immunity involves antigen presentation on HLA class I molecules, we hypothesized that individuals with suitable HLA type could be less prone to develop NPMc+ AML. We compared HLA class I distribution in NPMc+ AML patient cohort (398 patients from 5 centers) with the HLA allele frequencies of the healthy population and found HLA-A*02, B*07, B*40 and C*07 underrepresented in the NPMc+ AML group. Presence of B*07 or C*07:01 antigen was associated with better survival in patients without concomitant FLT3 internal tandem duplication. Candidate NPM-derived immunopeptides were found for B*40 and B*07 using prediction software tools. Our findings suggest that a T-cell-mediated immune response could actually explain better prognosis of NPMc+ patients and provide a rationale for attempts to explore the importance of immunosuppressive mechanisms in this AML subgroup.
Asunto(s)
Antígenos de Histocompatibilidad Clase I , Inmunidad Celular , Leucemia Mieloide Aguda , Proteínas de Neoplasias , Proteínas Nucleares , Linfocitos T/inmunología , Adulto , Anciano , Supervivencia sin Enfermedad , Femenino , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/mortalidad , Masculino , Persona de Mediana Edad , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/inmunología , Proteínas Nucleares/genética , Proteínas Nucleares/inmunología , Nucleofosmina , Prevalencia , Tasa de SupervivenciaRESUMEN
C-terminal mutations of the nucleolar protein nucleophosmin (NPM) are the most frequent genetic aberration detected in acute myeloid leukemia (AML) with normal karyotype. The mutations cause aberrant cytoplasmic localization of NPM and lead to loss of functions associated with NPM nucleolar localization, e.g. in ribosome biogenesis or DNA-damage repair. NPM has many interaction partners and some of them were proved to interact also with the mutated form (NPMmut) and due to this interaction thereby to be withdrawn from their site of action. We analyzed the impact of the mutation on NPM interaction with nucleolin (NCL) which is also prevalently localized into the nucleolus and cooperates with wild-type NPM (NPMwt) in many cellular processes. We revealed that the NCL-NPM complex formation is completely abolished by the mutation and that the presence/absence of the interaction is not affected by drugs causing genotoxic stress or differentiation. Deregulation resulting from changes of NCL/NPMwt ratio may contribute to leukemogenesis.
Asunto(s)
Nucléolo Celular/metabolismo , Leucemia Mieloide Aguda/metabolismo , Complejos Multiproteicos/metabolismo , Mutación , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Unión al ARN/metabolismo , Línea Celular Tumoral , Nucléolo Celular/genética , Nucléolo Celular/patología , Células HEK293 , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Complejos Multiproteicos/genética , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Nucleofosmina , Fosfoproteínas/genética , Proteínas de Unión al ARN/genética , NucleolinaRESUMEN
Oligomerization plays a crucial role in the function of nucleophosmin (NPM), an abundant nucleolar phosphoprotein. Two dual-color methods based on modern fluorescence confocal microscopy are applied for tracking NPM aggregates in live cells: cross-correlation Number and Brightness analysis (ccN&B) combined with pulsed interleaved excitation (PIE) and fluorescence-lifetime imaging microscopy (FLIM) utilizing resonance energy transfer (FRET). HEK-293T cells were transfected with mixture of plasmids designed for tagging with fluorescent proteins so that the cells express mixed population of NPM labeled either with eGFP or mRFP1. We observe joint oligomers formed from the fluorescently labeled NPM. Having validated the in vivo methods, we study an effect of substitutions in cysteine 21 (Cys21) of the NPM N-terminus on the oligomerization to demonstrate applicability of the methods. Inhibitory effect of mutations of the Cys21 to nonpolar Ala or to aromatic Phe on the oligomerization was reported in literature using in vitro semi-native electrophoresis. However, we do not detect any break-up of the joint NPM oligomers due to the Cys21 mutations in live cells. In vivo microscopy observations are supported by an in vitro method, the GFP-Trap immunoprecipitation assay. Our results therefore show importance of utilizing several methods for detection of biologically relevant protein aggregates. In vivo monitoring of the NPM oligomerization, a potential cancer therapy target, by the presented methods offers a new way to monitor effects of drugs that are tested as NPM oligomerization inhibitors directly in live cells.
Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas Nucleares/metabolismo , Agregado de Proteínas/fisiología , Humanos , NucleofosminaRESUMEN
Interaction of leukemia blasts with the bone marrow extracellular matrix often results in protection of leukemia cells from chemotherapy and in persistence of the residual disease which is on the basis of subsequent relapses. The adhesion signaling pathways have been extensively studied in adherent cells as well as in mature haematopoietic cells, but the adhesion structures and signaling in haematopoietic stem and progenitor cells, either normal or malignant, are much less explored. We analyzed the interaction of leukemia cells with fibronectin (FN) using interference reflection microscopy, immunofluorescence, measurement of adherent cell fraction, real-time microimpedance measurement and live cell imaging. We found that leukemia cells form very dynamic adhesion structures similar to early stages of focal adhesions. In contrast to adherent cells, where Src family kinases (SFK) belong to important regulators of focal adhesion dynamics, we observed only minor effects of SFK inhibitor dasatinib on leukemia cell binding to FN. The relatively weak involvement of SFK in adhesion structure regulation might be associated with the lack of cytoskeletal mechanical tension in leukemia cells. On the other hand, active Lyn kinase was found to specifically localize to leukemia cell adhesion structures and a less firm cell attachment to FN was often associated with higher Lyn activity (this unexpectedly occurred also after cell treatment with the inhibitor SKI-1). Lyn thus may be important for signaling from integrin-associated complexes to other processes in leukemia cells.
Asunto(s)
Dasatinib/farmacología , Fibronectinas/metabolismo , Leucemia/tratamiento farmacológico , Familia-src Quinasas/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Adhesión Celular/fisiología , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Adhesiones Focales/efectos de los fármacos , Adhesiones Focales/metabolismo , Humanos , Fosforilación/efectos de los fármacos , Familia-src Quinasas/metabolismoRESUMEN
Mutations of the gene for nucleophosmin (NPM1) are the most frequent genetic aberration in patients with acute myeloid leukemia (AML). The mechanism of leukemic transformation in this leukemia subtype is not fully understood, but aberrant cytoplasmic localization of mutated NPM (NPMmut) is widely considered as an important factor for leukemia manifestation. We analyzed the subcellular localization of three types of NPM with a C-terminal mutation (A, B and E). Genes for the individual NPM forms were fused with a gene for one of fluorescent protein variants in plasmids, which were transfected into three cell lines with different endogenous NPM expression. Subcellular localization of the fluorescent protein-labeled NPM was further correlated with the relative expression of all NPM forms. We confirmed a high cytoplasmic expression of NPMmutA and NPMmutB whereas a substantial fraction of NPMmutE was found to be localized in nucleoli. Moreover, we revealed that the localization of fluorescently labeled NPM is affected by the interaction between various forms of the protein.
Asunto(s)
Leucemia Mieloide Aguda/metabolismo , Mutación , Proteínas Nucleares/metabolismo , Animales , Línea Celular Tumoral , Humanos , Ratones , Células 3T3 NIH , Proteínas Nucleares/genética , Nucleofosmina , Unión Proteica , Fracciones Subcelulares/metabolismoRESUMEN
The expression on the surface of tumor cells of ligands for the PD-1 inhibitory receptor prevents the antitumor immune response and is considered to be a negative prognostic factor in a variety of solid tumors as well as in hematologic malignancies. To determine if it were possible to analyze PD-L1 with PCR-based methods, we assessed the expression of PD-L1 in primary samples from patients with acute myeloid leukemia, in healthy donors, and in a panel of cell lines, by means of flow cytometry, RT-PCR, and Western blotting. Although the surface density of the protein was not correlated with the amount of expressed full-length mRNA, we found a statistically significant positive correlation between PD-L1 surface density and the ratio of two transcript variants (variant 1/variant 2). Our PCR-based method allows for retrospective examination of PD-L1 surface expression from frozen cDNA samples, without the need for a reference gene. Our results also suggest that variant 2, which is produced by alternative splicing, negatively regulates PD-L1 protein expression on the cell surface. In addition, PD-L1 exposition on the cell surface is clearly associated with a shift of electrophoretic mobility, observed on Western blots. This finding can explain the relatively large variability in PD-L1 apparent molecular weight reported in the literature and offers an alternate means for the assessment of PD-L1 surface expression. Cancer Immunol Res; 4(10); 815-9. ©2016 AACR.
Asunto(s)
Antígeno B7-H1/biosíntesis , Biomarcadores de Tumor/biosíntesis , Leucemia Mieloide Aguda/inmunología , Empalme Alternativo , Antígeno B7-H1/sangre , Antígeno B7-H1/genética , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Western Blotting/métodos , Regulación Neoplásica de la Expresión Génica/inmunología , Variación Genética , Humanos , Leucemia Mieloide Aguda/genética , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/sangre , Proteínas de Neoplasias/genética , ARN Mensajero/genética , ARN Neoplásico/genética , Células Tumorales CultivadasRESUMEN
Tyrosine kinase inhibitors (TKIs) targeting BCR-ABL have dramatically improved chronic myeloid leukemia therapy. While imatinib remains to be the first line therapy, about 30% of patients develop resistance or intolerance to this drug and are recommended to switch to other TKIs. Nilotinib and dasatinib are currently implemented into the first line therapy and other inhibitors have already entered the clinical practice. This opens further questions on how to select the best TKI for each patient not only during the therapy but also at diagnosis. The individualized therapy concept requires a reliable establishment of prognosis and prediction of response to the available TKIs. We tested the ex vivo sensitivity of patient primary leukocytes to imatinib, nilotinib and dasatinib - two concentrations of each inhibitor for 48h incubation - and we evaluated the usefulness of such tests for the clinical practice. Besides reflecting the actual sensitivity to the therapy, our optimized simple tests were able to predict the outcome in 90/87% of patients, for the next 12/24months, respectively. According to these results, the presented ex vivo testing could help clinicians to select the appropriate drug for each patient at diagnosis and also at any time of the therapy.
Asunto(s)
Antineoplásicos/farmacología , Dasatinib/farmacología , Resistencia a Antineoplásicos , Mesilato de Imatinib/farmacología , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Antineoplásicos/uso terapéutico , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Dasatinib/uso terapéutico , Humanos , Mesilato de Imatinib/uso terapéutico , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Leucocitos/efectos de los fármacos , Leucocitos/patología , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirimidinas/uso terapéutico , Resultado del TratamientoRESUMEN
Specific mutations involving C-terminal part of the nucleolar protein nucleophosmin (NPM) are associated with better outcome of acute myeloid leukemia (AML) therapy, possibly due to aberrant cytoplasmic NPM localization facilitating induction of anti-NPM immune response. Actinomycin D (actD) is known to induce nucleolar stress leading to redistribution of many nucleolar proteins, including NPM. We analyzed the distribution of both wild-type and mutated NPM (NPMmut) in human cell lines, before and after low-dose actD treatment, in living cells expressing exogenous fluorescently labeled proteins as well as using immunofluorescence staining of endogenous proteins in fixed cells. The wild-type NPM form is prevalently nucleolar in intact cells and relocalizes mainly to the nucleoplasm following actD addition. The mutated NPM form is found both in the nucleoli and in the cytoplasm of untreated cells. ActD treatment leads to a marked increase in NPMmut amount in the nucleoplasm while a mild decrease is observed in the cytoplasm. Cell death was induced by low-dose actD in all the studied leukemic cell lines with different p53 and NPM status. In cells expressing the tumor suppresor p53 (CML-T1, OCI-AML3), cell cycle arrest in G1/G0 phase was followed by p53-dependent apoptosis while in p53-null HL60 cells, transient G2/M-phase arrest was followed by cell necrosis. We conclude that although actD does not increase NPM concentration in the cytoplasm, it could improve the effect of standard chemotherapy in leukemias through more general mechanisms.