Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Pathol ; 262(4): 505-516, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38332727

RESUMEN

Pulmonary fibrosis, especially idiopathic pulmonary fibrosis (IPF), portends significant morbidity and mortality, and current therapeutic options are suboptimal. We have previously shown that type I collagen signaling through discoidin domain receptor 2 (DDR2), a receptor tyrosine kinase expressed by fibroblasts, is critical for the regulation of fibroblast apoptosis and progressive fibrosis. However, the downstream signaling pathways for DDR2 remain poorly defined and could also be attractive potential targets for therapy. A recent phosphoproteomic approach indicated that PIK3C2α, a poorly studied member of the PI3 kinase family, could be a downstream mediator of DDR2 signaling. We hypothesized that collagen I/DDR2 signaling through PIK3C2α regulates fibroblast activity during progressive fibrosis. To test this hypothesis, we found that primary murine fibroblasts and IPF-derived fibroblasts stimulated with endogenous or exogenous type I collagen led to the formation of a DDR2/PIK3C2α complex, resulting in phosphorylation of PIK3C2α. Fibroblasts treated with an inhibitor of PIK3C2α or with deletion of PIK3C2α had fewer markers of activation after stimulation with TGFß and more apoptosis after stimulation with a Fas-activating antibody. Finally, mice with fibroblast-specific deletion of PIK3C2α had less fibrosis after bleomycin treatment than did littermate control mice with intact expression of PIK3Cα. Collectively, these data support the notion that collagen/DDR2/PIK3C2α signaling is critical for fibroblast function during progressive fibrosis, making this pathway a potential target for antifibrotic therapy. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Receptor con Dominio Discoidina 2 , Fibrosis Pulmonar Idiopática , Ratones , Animales , Receptor con Dominio Discoidina 2/genética , Receptor con Dominio Discoidina 2/metabolismo , Colágeno Tipo I/metabolismo , Fibroblastos/patología , Colágeno/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Receptores con Dominio Discoidina/metabolismo , Pulmón/patología
2.
Respir Res ; 24(1): 314, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38098035

RESUMEN

Recent data from human studies and animal models have established roles for type II alveolar epithelial cell (AEC2) injury/apoptosis and monocyte/macrophage accumulation and activation in progressive lung fibrosis. Although the link between these processes is not well defined, we have previously shown that CD36-mediated uptake of apoptotic AEC2s by lung macrophages is sufficient to drive fibrosis. Importantly, apoptotic AEC2s are rich in oxidized phospholipids (oxPL), and amongst its multiple functions, CD36 serves as a scavenger receptor for oxPL. Recent studies have established a role for oxPLs in alveolar scarring, and we hypothesized that uptake and accrual of oxPL by CD36 would cause a macrophage phenotypic change that promotes fibrosis. To test this hypothesis, we treated wild-type and CD36-null mice with the oxPL derivative oxidized phosphocholine (POVPC) and found that CD36-null mice were protected from oxPL-induced scarring. Compared to WT mice, fewer macrophages accumulated in the lungs of CD36-null animals, and the macrophages exhibited a decreased accumulation of intracellular oxidized lipid. Importantly, the attenuated accrual of oxPL in CD36-null macrophages was associated with diminished expression of the profibrotic mediator, TGFß. Finally, the pathway linking oxPL uptake and TGFß expression was found to require CD36-mediated activation of Lyn kinase. Together, these observations elucidate a causal pathway that connects AEC2 injury with lung macrophage activation via CD36-mediated uptake of oxPL and suggest several potential therapeutic targets.


Asunto(s)
Fibrosis Pulmonar , Ratones , Humanos , Animales , Fibrosis Pulmonar/metabolismo , Fosfolípidos/metabolismo , Cicatriz/metabolismo , Macrófagos/metabolismo , Ratones Noqueados , Fibrosis , Factor de Crecimiento Transformador beta/metabolismo
3.
Am J Physiol Lung Cell Mol Physiol ; 325(3): L342-L351, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37489274

RESUMEN

Progressive pulmonary fibrosis is a devastating condition and current treatment is suboptimal. There has been considerable interest in the role of tyrosine kinase signaling as mediators of pro- and antifibrotic processes. Nintedanib is a nonspecific tyrosine kinase that has been shown to have therapeutic benefit in lung fibrosis. However, the precise mechanism of action remains unclear because nintedanib inhibits several tyrosine kinases, which are often expressed on multiple cell types with different activities during fibrosis. Discoidin domain receptor 2 (DDR2) has been suggested as a potential target of nintedanib. DDR2 is a receptor tyrosine kinase that is activated by fibrillar collagens such as type I collagen. DDR2 is primarily expressed by fibroblasts. The effectiveness of specifically targeting DDR2 signaling during fibrosis remains undefined. In the present study, we show that nintedanib acts as a direct and indirect inhibitor of DDR2. We then utilize a novel allosteric inhibitor of DDR2, WRG-28, which blocks ligand binding and activation of DDR2. We find that WRG-28 augments fibroblast apoptosis and attenuates fibrosis. Finally, we show that fibroblast type I collagen autocrine signaling is regulated by DDR2 through both kinase-dependent and kinase-independent functions of DDR2. These findings highlight the importance of type I collagen autocrine signaling by fibroblasts during fibrosis and demonstrate that DDR2 has a central role in this pathway making it a potential therapeutic target.NEW & NOTEWORTHY Type I collagen is a major component of fibrosis and can signal through cell surface receptors such as discoidin domain receptor 2 (DDR2). DDR2 activation can lead to further collagen deposition by fibroblasts setting up a profibrotic positive feedback loop. In this report, we find that inhibition of DDR2 with nintedanib or a specific DDR2 inhibitor, WRG-28, can disrupt this cycle and prevent fibrosis through augmented fibroblast apoptosis and inhibited activation.


Asunto(s)
Receptor con Dominio Discoidina 2 , Humanos , Receptor con Dominio Discoidina 2/metabolismo , Colágeno Tipo I/metabolismo , Fibroblastos/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Fibrosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA